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Lossless Convexification of Nonconvex Control
Bound and Pointing Constraints of the Soft

Landing Optimal Control Problem
Behçet Açıkmeşe, John M. Carson III, and Lars Blackmore

Abstract— Planetary soft landing is one of the benchmark
problems of optimal control theory and is gaining renewed
interest due to the increased focus on the exploration of planets
in the solar system, such as Mars. The soft landing problem
with all relevant constraints can be posed as a finite-horizon
optimal control problem with state and control constraints.
The real-time generation of fuel-optimal paths to a prescribed
location on a planet’s surface is a challenging problem due to the
constraints on the fuel, the control inputs, and the states. The
main difficulty in solving this constrained problem is the existence
of nonconvex constraints on the control input, which are due to
a nonzero lower bound on the control input magnitude and a
nonconvex constraint on its direction. This paper introduces a
convexification of the control constraints that is proven to be
lossless; i.e., an optimal solution of the soft landing problem can
be obtained via solution of the proposed convex relaxation of the
problem. The lossless convexification enables the use of interior
point methods of convex optimization to obtain optimal solutions
of the original nonconvex optimal control problem.

Index Terms— Convex optimization, convexification, interior
point method algorithms, optimal control, planetary soft landing.

I. INTRODUCTION

PLANETARY soft landing is one of the benchmark prob-
lems of optimal control theory and is gaining renewed

interest due to the increased focus on the exploration of planets
in the solar system. The main focus of the missions in the
near future is to soft-land precisely at scientifically interesting
locations, which is also referred to as precision or pinpoint
landing. The soft landing is the final phase of a planetary
EDL (entry, descent, and landing), and it is also referred to
as the powered descent landing stage. In the powered descent
stage, the vehicle is guided as close as possible to a prescribed
location on the planet’s surface by using thrusters that provide
the control authority. This phase concludes when the vehicle
lands with zero velocity relative to the surface, i.e., when it
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“soft lands.” The problem of designing the fuel-optimal thrust
profile as a function of time, which delivers the vehicle as close
as possible to a prescribed target under constraints on the thrust
and the state of the landing vehicle, is a finite-horizon optimal
control problem, and it is referred to as the “soft landing”
problem. In this paper, we present an algorithm, which is
referred to as the powered descent guidance algorithm, to
compute optimal solutions of the soft landing problem based
on a lossless convexification of the problem.

Powered descent guidance algorithms minimize the land-
ing error by simultaneously satisfying the constraints such
as the governing physics, thrust bounds, and position and
speed constraints. Additionally, the short duration of planetary
powered descent requires that the guidance algorithms be
executed quickly on board in real time and that they guarantee
finding a solution when one exists. However, the soft-landing
powered-descent guidance problem is a nonconvex finite-
horizon optimal control problem in its original form because
of the control constraints. The descent thrusters cannot be
throttled off after ignition, so the guidance algorithm must
generate valid thrust vectors with a nonzero minimum and
maximum on the thrust magnitude. This is a nonconvex
constraint on the control input. Further, onboard sensors for
terrain-relative navigation generally require specific viewing
orientations, which constrain the allowable spacecraft orienta-
tions and thus the thrust vector pointing direction, which is an
additional source of nonconvexity. The main contribution of
this paper is to formulate a convex relaxation of the original
optimal control problem and show that an optimal solution of
the relaxed problem is also optimal for the original one. We
refer to this as a lossless convexification of the original control
problem, since no part of the feasible region is removed and
the optimal solutions of the relaxed problem define optimal
solutions to the original problem. Note that many nonconvex
optimal control problems can be convexified, but guaranteeing
that the convexification is lossless is not always possible. More
particularly, one can convexify the problem in two obvious
ways: 1) restrict the set of feasible solutions to a convex subset
of the feasible set and 2) relax the set of feasible solutions to
a convex set containing the original set of feasible solutions.
The first approach produces a feasible solution of the original
problem with an upper bound on the actual optimal cost, and
the second approach generates a lower bound on the optimal
cost but, in general, does not necessarily provide a feasible
solution of the original problem. Hence the first approach has
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a loss in the optimal cost achievable and the second approach
has a loss since it does not necessarily provide a feasible
solution. Our convexification follows the second approach,
but we guarantee a feasible and, hence, optimal solution of
the original problem. Therefore, our convexification of control
constraints is lossless. Another source of nonconvexity is
having time-varying mass in the dynamics, which is resolved
via a change of variables as in [1].

A number of prior works have proposed solutions to variants
of the powered descent guidance problem, including [1]–[8],
and [9]. In [3], a 1-D version of the soft landing problem is
solved analytically in a closed form. However, this solution
cannot be extended to the 3-D problem with state or con-
trol constraints. One existing solution method is our convex
optimization approach [1], [2], which poses the problem of
minimum-fuel powered descent guidance as a second-order
cone program (SOCP). This optimization problem can be
solved in polynomial time using existing interior point method
(IPM) algorithms that have a deterministic stopping criterion
given a prescribed level of accuracy. That is, the global opti-
mum can be computed to any given accuracy with an a priori
known upper bound, i.e., a polynomial function of the problem
size, on the number of iterations required for convergence. In
addition, IPM algorithms of SOCPs are guaranteed to find a
feasible solution if one exists [10]–[13]. This is in contrast
with other approaches that either compute a closed-form
solution by ignoring the constraints of the problem [5], [14],
propose solving a nonlinear optimization on board [6], [7], or
solve a related problem that does not minimize fuel use [8].
The closed-form solution approaches result in solutions that do
not obey the constraints inherent in the problem, such as no
subsurface flight constraints. This means that constraints must
be checked explicitly after a solution is generated, and any
solution that violates the constraints is rejected. In practice,
this reduces the size of the region from which return to
the target is possible by a factor of five or more [15], and
the proposed method is numerically robust as also observed
independently [16]. Nonlinear optimization approaches, on
the other hand, cannot provide a priori guarantees on how
many iterations will be required to find a feasible trajectory,
and are not guaranteed to find the global optimum, which
limits their onboard applicability. For a comparison of the
convex optimization approach to alternative approaches, see
[9] and [15].

In this paper, we unify the convex optimization approaches
of [1], [2], [17] and extend them to handle thrust pointing
constraints. While convexifying the problem with nonconvex
thrust pointing constraints, we develop a geometrical insight
into the problem that establishes a connection with “normal
systems” [18]. A normal linear system is defined in the context
of optimal control theory where the system is said to be normal
with respect a set of feasible controls if it maximizes the
Hamiltonian at a unique point of the set of feasible controls. In
the case when the set of feasible controls is convex, a system
being normal implies that the Hamiltonian is maximized at an
extreme point of the set [18]. Our convexification result has
a similar geometric interpretation since it establishes lossless
convexification by ensuring that the Hamiltonian is maximized

at the extreme points of a projection of the relaxed set of
feasible controls. This set is then shown to be contained in
the original nonconvex set of feasible controls, thereby estab-
lishing that we can obtain optimal solutions of the original
nonconvex problem via solving its convex relaxation.

The theoretical development of lossless convexification for
the soft landing problem allows the application of IPMs of
convex optimization [10]–[12], [19] that can solve these prob-
lems reliably with polynomial-time convergence guarantees.
Further, a surge of interest in the area of fast real-time
convex optimization [20]–[22] has demonstrated computa-
tional speedups of several orders of magnitude for IPMs. The
advancements in this area will dramatically enhance the real-
time computational efficiency of IPMs, thereby enabling their
use for planetary soft landing.

A. Partial List of Notations

R is the set of real numbers; a condition is said to hold
almost everywhere in the interval [a, b], a.e. [a, b] if the set
of points in [a, b] where this condition fails to hold is in a set
of measure zero; R

n is the n-dimensional real vector space;
‖v‖ is the 2-norm of the vector v; 0 is a matrix of zeros;
I is the identity matrix; ei is a column vector with its i th
entry 1 and other entries zero; (v1, v2, . . . , vm) represents a
vector obtained by augmenting vectors v1, . . . , vm such that
(v1, v2, . . . , vm) := [

vT
1 vT

2 , . . . , svT
m

]T
; ∂S denotes the set of

boundary points and int S denotes the interior of the set S.

II. PLANETARY LANDING WITH THRUST POINTING

CONSTRAINTS

The planetary soft landing problem searches for the thrust
(control) profile Tc and an accompanying translational state
trajectory (r, ṙ) which guide a lander from an initial position
r0 and velocity ṙ0 to a state of rest at the prescribed target
location on the planet while minimizing the fuel consumption.
The problem considers planets with a constant rotation rate
(angular velocity), a uniform gravity field, and negligible aero-
dynamic forces during the powered-descent phase of landing.
When the target point is unreachable from a given initial
state, a precision landing problem (or minimum landing error
problem) is considered instead, with the objective to first find
the closest reachable surface location to the target and second
to obtain the minimum fuel state trajectory to that closest
point. We formulate a prioritized optimization approach that
handles both problems under a unified framework, which is
then referred to as the planetary soft landing problem.

In this problem, there are several state and control con-
straints. The main state constraints are the glide slope con-
straint on the position vector and an upper bound constraint
on the velocity vector magnitude. The glide slope constraint
is described in Fig. 1 and is imposed to ensure that the
lander stays at a safe distance from the ground until it
reaches its target. The upper bound on velocity is needed to
avoid supersonic velocities for planets with atmosphere, where
the control thrusters can become unreliable. Both of these
constraints are convex and fit well to the convex optimization
framework considered in this paper. The control constraints,
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Fig. 1. Glide slope constraint in the minimum landing error powered descent
guidance problem. This constraint requires the spacecraft to remain in a cone
defined by the minimum slope angle γ. In the minimum landing error case,
the apex of the cone coincides with the landed position of the spacecraft,
rather than the original target.

Pointing
Envelope

Intersection

Pointing
Envelope

Intersection

(a) (b) (c)

Fig. 2. (a) Planar representation of original thrust bounds, intersec-
tion of thrust bounds and thrust pointing limits: (b) θ ∈ (π/2, π ) and
(c) θ ∈ [0, π/2].

however, are challenging since they define a nonconvex set
of feasible controls. We have three control constraints (see
Fig. 2). Given any maneuver time (time of flight) t f , for all
t ∈ [0, t f ].

1) Convex upper bound on thrust, ‖Tc(t)‖ ≤ ρ2.
2) Nonconvex lower bound on thrust, ‖Tc(t)‖ ≥ ρ1 > 0.
3) Thrust pointing constraint n̂T Tc(t)/‖Tc(t)‖ ≥ cos θ

where ‖n̂‖ = 1 is a direction vector and 0 ≤ θ ≤ π
is the maximum allowable angle of deviation from the
direction given by n̂, which is convex when θ ≤ π/2
and nonconvex when θ > π/2.

Onboard sensors for terrain-relative navigation generally
require specific viewing orientations, which imposes a con-
straint on the vehicle orientation (attitude). Since we model
the vehicle as a point mass with a thrust vector, the required
control force is applied by pointing the thrust vector along
the desired force direction. In this framework, we can impose
constraints on the vehicle orientation by simply restricting
the directions that the thrust vector can point to. This also
avoids incorporating the attitude dynamics of the vehicle into
the problem formulation, which would otherwise increase the
problem complexity significantly. Considering attitude dynam-
ics explicitly and imposing the pointing constraints directly,
rather than on the thrust direction, can be a part of future
research, which can benefit from the recent convexification
results on the constrained attitude control [23].

As mentioned earlier, the lander is modeled as a lumped
mass with a thrust vector for control, and its dynamics are

described by

ẋ(t) = A(ω) x(t) + B

(
g + Tc(t)

m(t)

)

ṁ(t) = −α‖Tc(t)‖ (1)

where x(t) = (r(t), ṙ(t)) : R+ → R
6, m(t) : R+ → R+ is

the mass of the lander

A(ω) =
[

0 I
−S(ω)2 −2S(ω)

]

B =
[

0
I

]

S(ω) =
⎡

⎣
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ (2)

ω = (ω1, ω2, ω3) ∈ R
3 is the vector of planet’s constant

angular velocity, g ∈ R
3 is the constant gravity vector, and

α > 0 is a constant that describes the fuel consumption (mass
depletion) rate. Here, the time derivatives of the vectorial
quantities are expressed in a planet surface fixed frame that
has the planet’s angular rotation rate and we also used the
rocket equation which relates the fuel mass consumption rate
to the applied thrust vector [24].

We use a lumped mass rigid body model of the landing
vehicle, where the translational dynamics are decoupled from
rotational (attitude) dynamics. This is a common assumption
used in practice mainly because the attitude control authority is
typically of far higher bandwidth than that of the translational
one. Specifically, any attitude maneuver required to point the
thruster in the right direction for translational control can
be done very quickly such that the interaction between the
attitude and translational control systems are minimal. As a
result, this is a reasonable assumption that reduces the problem
complexity considerably.

Given the constraints, the dynamics, and a target location
on the surface (0, q) where q ∈ R

2 denotes the coordinates of
the target at zero altitude, the planetary soft landing problem
can be formulated as a prioritized optimization problem as
follows.

Problem 1 (Nonconvex Minimum Landing Error Problem):

min
t f ,Tc

‖E r(t f ) − q‖ (3)

s.t. ẋ(t)= A(ω)x(t)+B

(
g + Tc(t)

m

)

ṁ(t) = −α‖Tc(t)‖

⎫
⎬

⎭
∀t ∈[0, t f ] (4)

x(t) ∈ X ∀ t ∈ [0, t f ] (5)

0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2, n̂T Tc(t) ≥ ‖Tc(t)‖ cos θ (6)

m(0) = m0, m(t f ) ≥ m0 − m f > 0 (7)

r(0) = r0, ṙ(0) = ṙ0 (8)

eT
1 r(t f ) = 0, ṙ(t f ) = 0. (9)

Problem 2 (Nonconvex Minimum Fuel Problem):

max
t f ,Tc

m(t f ) − m(0) = min
t f ,Tc(·)

∫ t f

0
α‖Tc(t)‖ dt s.t. (10)

dynamics and constraints given by (4)–(9)

‖E r(t f ) − q‖ ≤ ‖d∗
P1 − q‖. (11)
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In Problem 2, d∗
P1 = E r∗

P1(t f ) ∈ R
2 is the final position for

the optimal cost obtained by solving Problem 1, i.e., d∗
P1 is the

closest reachable point on the surface to the target location q ,
m f is the available fuel, m0 is the initial mass of the lander,
and

E =
[

eT
2

eT
3

]

=
[

0 1 0
0 0 1

]
.

We use X to define the set of feasible positions and velocities
for the spacecraft, i.e., the glide slope constraint, and the
maximum allowable speed constraint given by Vmax

X =
{
(r, ṙ) ∈ R

6 : ‖ṙ‖ ≤ Vmax,
∥
∥E

(
r − r(t f )

)∥∥

−cT (
r − r(t f )

) ≤ 0
}

(12)

where c specifies a feasible cone with its vertex at r(t f )

c � e1

tan γgs
, γgs ∈ (0, π/2). (13)

Here, γgs is the minimum glide slope angle, as illustrated
in Fig. 1. The glide slope constraint (12) ensures that the
trajectory to the target cannot be too shallow or go subsurface.
X is a convex set, and for completeness we give the standard
definition of the interior of X

intX� {x∈X :∃ ε>0 such that y∈X if ‖x− y‖<ε}. (14)

The boundary of X is given by ∂X � {x ∈ X : x /∈
intX}. Equation (7) defines the initial mass of the lander and
ensures that no more fuel than available is used. Equation (8)
defines the initial position and velocity of the lander, while
(9) constrains the final altitude and the velocity. The time of
flight t f is an optimization variable and is not fixed a priori.

The solution of the soft landing problem is obtained by
solving Problems 1 and 2. The motivation for this two-step
prioritization approach is quite intuitive. The primary goal
of planetary landing problem considered in this paper is to
land a vehicle as close to a given target as possible, i.e., to
minimize the landing error as in Problem 1. There can be
multiple optimal solutions for this problem, hence we have a
second step where we find the minimum error solution that
consumes the least fuel, as in Problem 2.

Remark 1: In Problem 2, the constraint on the final position
is given by inequality (11). This constraint could have also
been one of the following choices

E r(t f ) = d∗
P1 (15)

‖E r(t f ) − q‖ = ‖d∗
P1 − q‖. (16)

And the third choice is the constraint given by (11), which
is a convex relaxation of the second choice by including the
end positions strictly inside this circle (see Fig. 3). Clearly,
we will never be able to compute a solution that has final
position strictly inside the circle with this further relaxation
because the radius of this circle is the minimum achievable
distance to the target. We have two motivations to use the
third option: 1) to get the minimum fuel solution that has a
final position as close as possible to the desired target and 2)
to have all constraints of Problem 2 convex. To see how we

Fig. 3. The convex relaxation of the final position in Problem 2.

achieve both goals, let F1 represent all feasible solutions of
Problem 2 with (11) replaced by (15); F2 is the corresponding
set with (11) replaced by (16), and Fe is the set for Problem 2
as it is. Then it is straightforward to note that F1 ⊆ F2 ⊆ Fe.
Further, we have F2 = Fe. This follows from the fact that the
inequality (11) does not rule out solutions with end positions
on the circle and we cannot get inside the circle. Now, since
F1 ⊆ F2, the second option above will produce solutions that
use minimal fuel trajectories and end as close as possible to
the target. So the best choice is to use the second option.
But ‖E r(t f ) − q‖ = ‖d∗

P1 − q‖ is a nonconvex constraint
on the end position. Since F2 = Fe, we can simply replace
this nonconvex constraint with the convex inequality (11).
Consequently, we achieve the two main objectives: 1) to
prioritize two costs, the achievable distance and fuel, explicitly,
and 2) to convexify both problems so that they can be solved to
global optimality in polynomial time via IPM algorithms. Note
that we achieve both goals via a systematic prioritization of
costs. This kind of prioritization cost in optimization problems
is also referred to as lexicographic goal programming [25].

A key challenge in solving Problems 1 and 2 is the lower
bound ρ1 > 0 on the thrust magnitude in (6), which means that
the set of allowable thrust values is nonconvex (see the first
illustration in Fig. 2). Furthermore, when ρ1 = 0, the thrust
bound constraint is convex; however, the control constraints
can still be nonconvex due to the thrust pointing constraint in
(6), which is nonconvex for θ > π/2 (see the second and third
illustrations in Fig. 2). These nonconvex control constraints
prevent the direct use of convex optimization techniques in
solving this problem. Additionally, the dynamics for mass con-
sumption ṁ(t) in (4) define a nonlinear differential equation,
which when discretized leads to nonlinear equality constraints
which are also nonconvex.

The key result in [1] includes a relaxation to the nonconvex
thrust-bound constraints and an approach to handle the mass
consumption dynamics that provided a relaxed version of
Problem 2. The optimal solution of this relaxed problem
was shown to be also an optimal solution of Problem 2.
However, the convexification result of [1] does not hold in
the presence of any thrust pointing constraints, including when
θ ∈ [0, π/2]. This paper extends the convexification of control
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Fig. 4. Relaxed pointing constraint U1 := {(Tc, 
) : n̂T Tc ≥ cos θ
}
is convex, which is illustrated in the first row for a planer case. The set is
a half-space in the direction on the normal vector to the planes shown for
θ = 180° (left), θ = 90° (center), and θ = 0° (right). Since U2 := {(Tc, 
) :
‖Tc‖ ≤ 
, ρ1 ≤ 
 ≤ ρ2} is also convex, their intersection, U = U1 ∩ U2,
defines a convex set of feasible controls for the relaxed problem in Tc − 

space. This is demonstrated in the second row of illustrations for a given θ .

constraints to hold under thrust pointing constraints as well.
We also prove that the convexification still holds with the
planet’s rotation accounted for.

In the relaxed problem, we have the following control
constraints:

1) convex upper bound on thrust, ‖Tc(t)‖ ≤ 
(t);
2) convex thrust pointing constraint n̂T Tc(t) ≥ 
(t) cos θ ;
3) convex bounds on the slack variable 
, ρ1 ≤ 
(t) ≤ ρ2.

The relaxed pointing constraint forms a half-space of valid
thrust values in Tc-
 space, with pointing in the direction
of the outward facing normal to the half space, given by(
n̂, − cos θ

)
, which comes directly from the relaxed convex

pointing-constraint inequality above. The half-space constraint
is illustrated for several pointing angles (θ ={180, 90, and0°})
in Fig. 4, which uses a planar representation of thrust (i.e.,
2-D thrust) with a pointing vector n̂ along the Tc(1) axis. It
shows that the relaxed set of constraints is convex.

III. LOSSLESS CONVEXIFICATION

We propose the following relaxed minimum-error and
fuel-optimal control problems that are convex relaxations of
Problems 1 and 2.

Problem 3 (Convex Relaxed Minimum Landing Error
Problem):

min
t f ,Tc,


‖E r(t f ) − q‖ subject to (5), (7), (8), (9), and

ẋ(t) = A(ω)x(t) + B

(
g + Tc(t)

m

)

ṁ(t) = −α
(t)

⎫
⎬

⎭
∀ t ∈ [0, t f ] (17)

‖Tc(t)‖ ≤ 
(t), 0 < ρ1 ≤ 
(t) ≤ ρ2 (18)

n̂T Tc(t) ≥ cos θ 
(t) (19)

Problem 4 (Convex Relaxed Minimum Fuel Problem):

min
t f ,Tc,


∫ t f

0

(t)dt subject to (5), (7), (8), (9), (17), (18),

(19), and

‖E r(t f ) − q‖ ≤ ‖d∗
P3 − q‖ (20)

where d∗
P3 is the final optimal position from Problem 3. Note

that the nonconvex thrust constraints in (6) for Problems 1 and
2 have been replaced with convex constraints (18) and (19) in
Problems 3 and 4. In [1], we showed that constraint relaxation
(18) on the thrust bound allows the discrete-time form of
Problem 4 to be posed as a convex optimization problem; the
same holds true with the addition of the convex thrust-pointing
constraint (19). Hence we will not discuss the discretization
of this problem in this paper and refer the reader to [1].

Definition 1: Fe and F f denote the sets of feasible solu-
tions of Problems 1 and 2, i.e., {t f , Tc, x, m} ∈ Fe if it satisfies
all the state (5), control (6), and fuel (7) constraints, dynamics
(4), and boundary constraints (8) and (9) of Problem 1, and
similarly for F f . F∗

e and F∗
f are the corresponding set of

optimal solutions. Fre and Fr f are the set of feasible solutions
{t f , Tc, 
, x, m} for Problems 3 and 4, with F∗

re and F∗
r f , the

sets of optimal solutions.
Lemma 1: The following hold:

1) F f ⊆ Fe, Fr f ⊆ Fre, F∗
f ⊆ F∗

e , and F∗
r f ⊆ F∗

re;
2) if {t f , Tc, 
, x, m} ∈ Fr f such that ‖Tc(t)‖ = 
(t)

∀[0, t f ] then {t f , Tc, x, m} ∈ F f ;
3) if {t∗f , T ∗

c , 
∗, x∗, m∗} ∈ F∗
r f such that ‖Tc(t)∗‖ =


∗(t) a.e. [0, t∗f ] then {t∗f , T∗
c , x∗, m∗} ∈ F∗

f .
Proof: The first two relationships in 1) are straightforward

to prove. The next two relationships follow from the first two.
Consider a subset of Fr f defined as F̄r f composed of all
solutions of Fr f such that 
(t) = ‖Tc(t)‖, ∀t ∈ [0, t f ]. Since
{t f , Tc, 
, x, m} ∈ F̄r f , where ‖Tc(t)‖ = 
(t), satisfies all the
dynamics and constraints of Problem 2, {t f , Tc, x, m} ∈ F f .
This proves 2). Consequently, since the cost functions are
identical for Problem 4 with ‖Tc‖ = 
 and Problem 2, the
the last statement of the theorem follows.

To make use of Lemma 1, we need to compute an optimal
solution of Problem 4 and check whether 
(t) = ‖Tc(t)‖ ∀t ∈
[0, t∗f ] or not. But we do not know ahead of time, before
numerically computing the solution, whether this condition
will be satisfied or not. The following theorem establishes
that this condition will indeed be satisfied in general, with
the caveat that the problem may be required to be modified
slightly with the introduction of ε and ω̂. It also provides a
generalization of the earlier results in [1] and [2] to handle
thrust pointing constraints as well as nonzero lower bound on
the thrust magnitude. Hence it establishes a lossless convex-
ification of the control constraints in the minimum-fuel soft
landing problem, Problem 2, and hence Problem 1.

Theorem 1: Consider Problem 4 with ω replaced by ω̂,
which is defined as follows:

where ω̂ :=
⎧
⎨

⎩

ω if S(ω)n̂ �=0, NT S(ω)2n̂ �=0
ω + εn̂⊥if S(ω)n̂ = 0
ω + εn̂ if S(ω)n̂ �=0, NT S(ω)2n̂=0

(21)
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where n̂⊥ is a unit vector such that n̂T n̂⊥ = 0, N ∈ R
3×2

has its columns spanning the null space of n̂T , and ε > 0 is a
(arbitrarily small) real number. Let {t∗f , T∗

c , 
∗, x∗, m∗} ∈ F∗
r f

such that the corresponding state trajectory x∗(t) ∈ intX ∀t ∈
[0, t∗f ]. Then {t∗f , T∗

c , x∗, m∗} ∈ F∗
f with ω̂.

Proof: This proof uses Lemmas 2 and 3, which are given
in the Appendix.

Let q̃ := E r∗(t∗f ). Then we can also consider
{t∗f , T ∗

c , 
∗, x∗, m∗} as an optimal fuel solution of Problem
4, where the constraint ‖E r(t f )− q‖ ≤ ‖d∗

P1 − q‖ is replaced
by E r(t f ) = q̃. So, without loss of any generality, this version
of Problem 4 will be used in this proof.

Since x∗(t) ∈ intX and m(t) > m0 − m f for all t ∈ [0, t f ],
the Maximum Principle of optimal control [see [18, Sec. V.3]
or [26, Ch. 1]], there exists a constant β ≤ 0 and absolutely
continuous function λ : R+ → R

6 and η : R+ → R, the
co-state vectors, such that the following conditions hold.

1) Co-state conditions: ∀t ∈ [0, t∗f ]
(β, λ(t), η(t)) �= 0 (22)

λ̇(t) = −A(ω̂)Tλ(t) (23)

η̇(t) = λ(t)T BTc(t)

m(t)2 . (24)

2) Pointwise maximum principle:

H (φ(t))= M(x∗(t), m∗(t),λ(t), η(t)) a.e. t ∈ [0, t∗f ] (25)

where φ(t) = (t, x∗(t), m∗(t), T∗
c (t), 
∗(t),λ(t), η(t)) H is

the Hamiltonian defined by

H (φ) := β
 + λT (
A(ω̂)x + B(g + Tc/m)

) − α
η (26)

and, by letting V := {(Tc, 
) ∈ R
4 : ‖Tc‖ ≤ 
, ρ1 ≤ 
 ≤

ρ2, n̂T Tc ≥ 
 cos θ}
M(x∗, m∗,λ, η) = max

(Tc,
)∈V
H (φ). (27)

3) Transversality conditions:

η(t∗f ) = 0 and H (φ(t∗f )) = 0. (28)

The necessary conditions of optimality 1) and 2) directly
follow from the statement of the Maximum Principle. But the
transversality condition requires further explanation. Transver-
sality condition implies that (see [18, p. 190, Sec. V.3]), for an
optimal solution of the relaxed problem, the vector ψ , defined
by

ψ :=
(

H (φ(0)), H (φ(t∗f )), −λ(0),−η(0),λ(t∗f ), η(t∗f )
)

must be orthogonal to the manifold defined by the
set of feasible initial and final states described by
(0, t f , x0, m0, (0, q̃, 0), m(t∗f )), which is given by
span {e2, e14}. The above follows from the fact that t f

and m(t f ) are the only free variables in the manifold of
boundary conditions. This then implies that eT

2 ψ = 0 and
eT

14ψ = 0, i.e., H (φ(t∗f )) = 0 and η(t∗f ) = 0. Next we show
that

y(t) := BTλ(t) �= 0 a.e. [0, t∗f ]. (29)

This will be done by contradiction. Suppose that the condition
(29) does not hold. Since y is an output of the system given

by (23), y(t) = 0,∀t ∈ [0, t∗f ], or y(t) = 0 occurs at a
countable number of points in [0, t∗f ], which follows from the
first conclusion of Lemma 2. Suppose y(t) = 0 ∀t ∈ [0, t∗f ].
Note that the pair [A(ω), B] is controllable, which follows
from the fact that [B A(ω̂)B] is an invertible matrix. Hence
the pair (BT ,−A(ω̂)T ) is observable. Consequently, y(t) =
0 ∀t ∈ [0, t∗f ] implies that λ(t) = 0 ∀t ∈ [0, t∗f ]. Hence
η̇(t) = 0 ∀t ∈ [0, t∗f ]. Since η(t∗f ) = 0, this then implies
that η(t) = 0 ∀t ∈ [0, t∗f ]. These imply H (φ(t)) = β
(t).
Since H (φ(t∗f )) = 0 and 
(t) ≥ ρ1 > 0, this suggests
that β = 0. Therefore, (β,λ(t), η(t)) = 0 ∀ t ∈ [0, t∗f ],
which is a contradiction with necessary Condition 1) above.
Consequently, there are countably many number of points in
[0, t∗f ] where y(t) = 0. Since a countable set has measure
zero, condition (29) holds.

Since any countable set has measure zero, the second
conclusion of Lemma 2 implies that

y(t) �= −α(t)n̂ a.e. [0, t∗f ] for α(t) > 0. (30)

Since condition (29) holds, a.e. [0, t∗f ] such that y(t) �= 0,
and for a given 
∗(t) an optimal control thrust T∗

c (t) must
satisfy

T∗
c (t) = argmax

(Tc,
∗(t))∈V
y(t)T Tc = argmax

Tc ∈U(
∗)
y(t)T Tc (31)

where U(
) := {Tc ∈ R
3 : ‖Tc‖ ≤ 
, n̂T Tc ≥ 
 cos θ}.

Furthermore, since condition and (30) holds, a.e.[0, t∗f ] such
that y(t) �= 0 and y(t) �= −α(t)n̂ for some α(t) > 0, the
maximizing solution of (31) must be on the boundary point
of U(
∗) which is also an extremal point of the set U(
∗),
which follows from Lemma 3. This lemma also implies that
all extremal points of the set U(
) satisfy ‖Tc‖ = 
, and
hence ‖T ∗

c (t)‖ = 
∗(t)

‖T∗
c (t)‖ = 
∗(t) a.e. [0, t∗f ] (32)

which implies that an optimal solution of the relaxed problem
(4) satisfies

0<ρ1 ≤‖T ∗
c (t)‖≤ρ2, n̂T T∗

c (t)≥‖T ∗
c (t)‖ cos θ a.e. [0, t∗f ].

Consequently, (t∗f , T ∗
c , x∗, m∗) ∈ F f . Since for any

(t f , Tc, x, m) ∈ F f , (t f , Tc, ‖Tc‖, x, m) ∈ Fr f , an optimal
solution of Problem 4 has an optimal cost which is not
greater than the optimal cost of Problem 2. This implies that
(t∗f , T∗

c , x∗, m∗) ∈ F∗
f from Lemma 1.

The above theorem states that we can find the optimal
solution for Problem 2 by solving its relaxation in Problem 4
for ω̂. Clearly, for ω = ω̂, we can find the exact optimal
solution of the original problem of interest by solving its
relaxation. When ω̂ �= ω, we can find optimal solutions of
a problem that can be made arbitrarily close to the problem of
interest by simply choosing ε > 0 close to zero. Also when
θ = π , i.e., when there is no pointing constraint, we can use
any unit vector for n̂ such that ω = ω̂. Hence we can find the
exact optimal solution of the original problem of interest.

This result has a connection with “normal systems” [18].
A normal linear system is defined in the context of the
optimal control theory and a linear system is said to be normal
with respect to a set of feasible controls if it maximizes the
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(a) (b)

Fig. 5. Planar representation of U(
): (a) θ ∈ (π/2, π) and (b) θ ∈ [0, π/2].
Extreme points of U(
) satisfy that ‖Tc‖ = 
, and they are on the solid arc
in both figures. The optimal solutions of Problem 4 must be on these extreme
points in order to produce feasible, hence optimal, solutions of Problem 2,
which is established by Theorem 1.

Hamiltonian at a unique point of the set of feasible controls.
In the case when this set is convex, a system being normal
implies that the Hamiltonian is maximized at an extreme point
of the set of feasible controls (see [18, Coroll. 7.2]). Our
convexification result has a similar geometric interpretation
since it establishes lossless convexification by ensuring that
Hamiltonian is maximized at the extreme points of a projection
of the relaxed set of feasible controls. This set is then shown to
be contained in the original nonconvex set of feasible controls,
thereby establishing that we can obtain optimal solutions
for the original nonconvex problem via solving its convex
relaxation. The projected set of the relaxed set of controls
mentioned above, U, is given by

U(
) := {Tc ∈ R
3 : ‖Tc‖ ≤ 
, T T

c n̂ ≥ cos θ
}.
Set U and its extreme points are shown in Fig. 5 for θ ∈
[0, π/2] and θ ∈ (π/2, π), and one can observe that its
extreme points satisfy ‖Tc‖ = 
, which results in the con-
vexification of Problem 2 via Problem 4. Indeed, Theorem 1
establishes that any optimal solution of Problem 4 must lie
on the extreme points of U(
∗), and then the convexification
follows from Lemma 1. Note that being in the interior of U(
)
or on a boundary point that is not an extreme point of U(
)
can lead to thrust vectors that are not feasible for the original
problem, i.e., Problem 2. But, as noted earlier, an extreme
point of the set satisfies ‖Tc‖ = 
 and hence is in the set
of feasible controls for Problem 2. Since our result proves
that the optimal solution of the relaxed problems occurs at the
extreme points, it guarantees that the resulting thrust vectors
will always be feasible. Equipped with Lemma 1 and Theorem
1, we propose the following two-step algorithm for the solution
of the soft landing problem:

1) solve Problem 3 with ω̂ to obtain dP3;
2) solve Problem 4 with ω̂ and dP3.

In cases when ω̂ �= ω, the above algorithm will produce
optimal solutions to a problem with dynamics slightly per-
turbed from the original dynamics. This is necessary for
purely theoretical reasons, and we have not yet empirically
encountered any case requiring this perturbation of the
dynamics.

As mentioned earlier, a more benign source of noncon-
vexity in the relaxed problems is the existence of 1/m
term multiplying the thrust vector in the dynamics. This
leads to nonlinearity in the dynamics of the system, which
then leads to nonconvex equality constraints in the result-
ing optimization problem. This difficulty will be resolved
as described in [1], and is briefly explained in the next
subsection.

Both steps above require solutions of the optimal control
problems in continuous time. These solutions are obtained
by discretizing the problems (with the change of variables
given in the next section) to obtain their discrete-time approx-
imations, which are convex parameter optimization prob-
lems: more specifically, SOCP problems. SOCPs are solved
numerically via IPMs to obtain the solutions of the optimal
control problems in both steps. This discretization is explained
in [1].

Theorem 1 ensures convexification will hold when the state
trajectories are strictly inside the set of feasible states. We
observed in our extensive simulations that the result still holds
even when the state trajectories intersect with the boundary
of the set of feasible states. A proof of this observation
is not included here, but will be the topic of a future
paper.

It is noteworthy that our convexification result relies on the
pair [A(ω̂), B] being controllable. So, it still applies under
system parameter variations as long as this controllability
property is preserved. This is clearly not a restrictive condition
since it is reasonable to expect that a planetary landing vehicle
would be designed to be controllable.

Another important issue is the robustness to uncertainties to
unknown parameter variations in the dynamic model or to the
disturbance forces. Here we provide a method to compute the
optimal state trajectory to be followed and the corresponding
optimal controls. Though it is not covered in this paper, one
has to consider a feedback control action to handle uncertain-
ties and disturbances. There are several approaches that we can
propose to achieve this: 1) to have a tracking feedback con-
troller to follow the optimal state trajectory; 2) to recompute
the optimal trajectory and controls as the state knowledge (esti-
mates) are updated during the maneuver; and 3) a combination
of tracking feedback and optimal control recomputations. All
actions would utilize the current best estimate of the state and
would provide the feedback action to minimize the effects
of uncertainties and disturbances. The design of a robust
feedback action will be another future extension to our current
paper.

A natural question is whether the convexification approach
here can be extended to other control constraints. Some new
results for linear systems are provided in [27], where this
convexification procedure is applied to a large class of control
constraints. However, there the convexification used the fact
that optimal controls are on the boundary points of the relaxed
set of controls rather than on the extremal points. With the
insight obtained in the current paper on the extremal points
of the relaxed set, there can be further generalization to this
convexification approach, which can be the subject of future
research.
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A. Change of Variables

We use the following change of variables on the thrust
vector and mass to remove the nonlinearity in the dynamics

due to Tc/m: σ � 


m
, u � Tc

m
, z � ln m.

The mass depletion dynamics can then be rewritten as

ż = ṁ(t)

m(t)
= −ασ(t) . (33)

The change of variables therefore yields a set of linear equa-
tions for the state dynamics. The control constraints, however,
are no longer convex. These are now given by

‖u(t)‖ ≤ σ(t) n̂T u(t) ≥ cos θ σ(t) ∀t ∈[0, t f] (34)

ρ1e−z(t) ≤ σ(t) ≤ ρ2e−z(t) ∀t ∈ [ 0, t f ]. (35)

As in [1], we use a second-order cone approximation of the
inequalities in (35) that can be readily incorporated into the
SOCP solution framework, given by

ρ1e−z0

[
1 − (z(t) − z0(t)) + (z(t) − z0(t))2

2

]

≤ σ(t) ≤ ρ2e−z0 [1 − (z(t) − z0(t))] ∀ t ∈ [0, t f ] (36)

where z0(t) = ln(m0 −αρ2t) and m0 is the initial mass of the
spacecraft.

In [1, Lemma 2], it is shown that the approximation of the
inequalities in (35) given by (36) always produces a feasible
solution of the relaxed problems and is generally very accurate
for both parts of the inequality and derives an analytic upper
bound on the approximation error. Since this paper’s focus is
the convexification of the control constraints, we will not go
into further details of this approximation and refer the reader
to [1] for more details.

IV. NUMERICAL EXAMPLES

This section presents a numerical example to demonstrate
the algorithm proposed in the previous section to solve the
planetary soft landing problem.

The pointing constraints in the planetary soft landing ensure
that the translational maneuver does not require the spacecraft
to be oriented outside of a desired pointing cone, which usually
results in a reduction in performance. For instance, as the
pointing constraints are tightened, the required fuel and flight
time generally increase due to the restricted thrust pointing
capability. This result will be seen in the following comparison
simulations, which make use of an example with the following
properties: m0 = 2000 kg, m f = 300 kg, ρ1 = 0.2 Tmax,
ρ2 = 0.8 Tmax, Tmax = 24000 N, and α = 5 × 10−4 s/m,
where Tmax is the maximum thrust magnitude. The thrust
limits coincide with a minimum and maximum throttle level of
20% and 80%, respectively. A frame of reference, as illustrated
in Fig. 1, is used to express the Martian gravity and rotation
vector, as well as the spacecraft’s initial state conditions at
powered-descent ignition. The initial state of the spacecraft
for the simulations is given by

r0 = (
2400, 450, −330

)
m, ṙ0 = (−10, −40, 10

)
m/s

(a) (b) (c)

Fig. 6. Simulation results with three different pointing constraints. (a) Uncon-
strained. (b) θ = 90°. (c) θ = 45°. Thrust pointing and magnitude constraints
of Problem 2 are satisfied for the optimal solution of Problem 4, as seen in
the first two plots. The last plot is the position trajectory of each solution.

Fig. 7. Example with one contact with the glide slope boundary and two
contacts with the speed boundary. The throttle and thrust angle from vertical
time profiles (second row) indicate that the thrust vector profile is feasible
for Problems 1 and 2, and the convexification still holds, and we obtain an
optimal solution to the soft landing problem.

TABLE I

TIGHTENING THRUST POINTING CONSTRAINTS AFFECTING THE FUEL

USE AND THE FLIGHT TIME

Attitude Required Fuel (kg) Flight Time (s)

Unconstrained 200.1 44.63

90° constraint 201.8 46.96

45° constraint 222.3 57.29

and the target landing site is at q = 0 m, which
is the origin of the guidance frame. The Mars gravita-
tional parameters, also expressed in the same coordinate
frame are as follows: g = (−3.71, 0, 0

)
m/s2 and ω =(

2.53×10−5, 0, 6.62×10−5
)

rad/s. Since S(ω)n̂ �= 0 and
NT S(ω)2n̂ �= 0, we have ω̂ = ω. Three simulations were
performed for varying pointing-constraint limits: 1) uncon-
strained; 2) 90° constraint; and 3) 45° constraint. The results
of these simulations are overlaid in Fig. 6. As seen in the plot,
the pointing angle is relative to local vertical, which aligns the
pointing cone n̂ vector along the coordinate frame x-axis. The
attitude pointing plot indicates that the solution of the relaxed
problem ensures satisfying the prescribed pointing constraints
for the original problem. The throttle plot shows that the
thrust bounds are satisfied, which indicates that the con-
straint relaxations in Problem 4 on both thrust magnitude and
pointing remain valid for the original problem [Problem 2].
This figure provides some further insight on the tradeoff in
performance that occurs as the constraints are tightened. As
the pointing limit tightens, the required flight time and fuel
increase, as summarized in Table I, which is also visible in the
position trajectory. The last plot of Fig. 6 overlays the position
trajectories coinciding with the three thrust profiles from the
prior figures. The 45° case overshoots the target along the
y-axis to satisfy the pointing constraint. Interestingly, the 90°
constrained path takes a more direct route.
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The next simulation (see Fig. 7) presents a case where the
convexification holds with the finite number of contacts with
the boundary of X. In this example, we have the following
parameters:

r0 = (
2400, 3400, 0

)
m, ṙ0 = (−40, 45, 0

)
m/s

with a glide slope γgs = 30° and θ = 120°, with a maximum
velocity of 90 m/s.

V. CONCLUSION

This paper presented a lossless convexification of thrust
pointing constraints for a benchmark problem in optimal
control theory, known as soft landing. This extended and
unified our previous work in the area, such that the algorithm
could handle upper and lower bounds on thrust, thrust pointing
constraints, position and velocity constraints, and planetary
rotation. This convexification enables the planetary soft land-
ing problem to be solved optimally by using convex optimiza-
tion, and is hence amenable to onboard implementation with
a priori bounds on the computational complexity and realtime
execution time.

APPENDIX

Lemma 2: Consider the following linear time invariant
system:

λ̇(t) = −A(ω̂)Tλ(t)

y(t) = BTλ(t) (37)

where λ(t) ∈ R
6 and y(t) ∈ R

3, and A(ω̂) ad B are given
by (2). Then the following conditions hold true; for any finite
interval [0, t f ]:

(i) y is an analytic function, and y(t) = 0 on either [0, t f ]
or at countable number of instances;

(ii) there is a countable number of instances in [0, t f ] such
that y(t) = α(t)n̂ for some α(t) > 0.

Proof: λ, hence y, are analytic functions of t from [28,
Th. 3, p. 213]. Hence y(t) = 0,∀t ∈ [0, t∗f ], or y(t) = 0
occurs at a countable number of points in [0, t∗f ] (Proposition
4.1 on [28, p. 41]). This proves (i).

To prove condition (ii), suppose that there exists an interval
[t1, t2] ⊆ [0, t∗f ], such that y(t) = −α(t)n̂ ∀ t ∈ [t1, t2],
for α(t) > 0. Letting λ = (λ1,λ2) where λ1,2 ∈ R

3,
v1 := S(ω̂)T n̂ and v2 := S(ω̂)T v1, this assumption implies
that the following dynamics hold for t ∈ [t1, t2] : λ̇1(t) =
−α(t)v2 and λ̇2(t) = −λ1(t) − 2α(t)v1.

Due to the construction of ω̂ in Problem 4, we have v1 �= 0
and NT v2 �= 0. The first inequality is straightforward to show.
To see the second one, we need to consider the three cases in
(21). First consider the case when S(ω)n̂ �=0, NT S(ω)2n̂ �=0.
Then ω = ω̂ and NT v2 = NT S(ω)2n̂ �= 0. Second, consider
the case when S(ω)n̂ = 0, that is, ω = an̂ for some a ∈ R.
Then ω̂ = an̂ + εn̂⊥. Then v2 = S(ω̂)T 2

n̂ = S(ω̂)2n̂ =
εS(an̂+εn̂⊥)S(n̂⊥)n̂. Since S(n̂⊥)n̂ is orthogonal to both an̂
and εn̂⊥, it is orthogonal to their sum, which is nonzero, and
hence v2 �= 0 and it is in the null space of n̂T . Consequently
NT S(ω̂)T 2

n̂ �= 0. Finally, consider the case when S(ω)n̂ �= 0
but NT S(ω)T 2

n̂ = 0. Then we have S(ω̂)2n̂ = S(ω)2n̂ +

εS(n̂)S(ω)n̂. This has a nonzero component in the nullspace
of n̂T , because εS(n̂)S(ω)n̂ is nonzero and in the nullspace
of n̂T , and S(ω̂)2n̂ is perpendicular to the nullspace of n̂T .
Consequently, we have NT v2 �= 0. Now note that vT

1 n̂ = 0.
Let v3 be a nonzero vector such that vT

3 n̂ = vT
3 v1 = 0. Hence

v1 and v3 span the nullspace of n̂. This implies that we can
write v2 = c1n̂ + c2v3 + c3v1 for some scalars c1 through c3.
Since vT

2 v1 = 0 and NT v2 �= 0 we know that c3 = 0 and
c2 �= 0.

Observe that

λ̇2(t) = λ1(t1) −
∫ t

t1
α(s)ds v2 − 2α(t)v1

which implies that

λ̇2(t) = λ1(t1) + g1(t)n̂ + g2(t)v3 − 2α(t)v1

where g1(t) = c1
∫ t

t1
α(s)ds and where g2(t) =

c2
∫ t

t1
α(s)ds �= 0 for t ∈ (t1, t2). Since v1, v3, and n̂ form

an orthogonal set of nonzero vectors, if α is a nonconstant
function of time then NT λ̇2(t) �= 0 a.e. [t1, t2]. If α is constant,
then g2 is a nonconstant, linear function of time (since c2 �= 0),
and hence NT λ̇2(t) �= 0 a.e. [t1, t2]. Consequently, NT λ̇2(t) �=
0 a.e. [t1, t2], which implies that there exists an open finite
interval in [t1, t2] such that λ2 will leave the subspace defined
by n̂, which is a contradiction caused by assuming that λ2(t) =
−α(t)n̂ in [t1, t2]. Therefore there exists no finite interval
where y(t) = λ2(t) = −α(t)n̂, that is, κ(t) := NT λ̇2(t) = 0.
Since κ is analytic function of time (due to λ being analytic
function of time), either it has a countable number of zeros
or there exists time intervals on which it is zero [28]. Since
we proved that the latter is not possible, then it must have a
countable number of zeros. This concludes the proof.
The following lemma is instrumental in the use of Pontryagin’s
Maximum Principle to show that the optimal control occur at
extreme points of a convex feasible set of controls.

Lemma 3: An optimal solution of the following optimiza-
tion problem is also an extreme point of the feasible set of
solutions U(
): maxTc yT Tc subject to Tc ∈ U(
) where
U(
) := {Tc : ‖Tc‖ ≤ 
, n̂T Tc ≥ cos θ
}, and y �= 0 and
y �= −αn̂ for any α > 0. Consequently an optimal solution
T∗

c satisfies that ‖T∗
c ‖ = 
.

Proof: Since the cost function of the optimization problem
is linear, hence convex, the maximization problem leads to an
optimal solution on the boundary of U, i.e., on ∂U [29]. ∂U
has a portion of the sphere with radius 
 and a portion of
a hyperplane with unit normal n̂. All extremal points of the
boundary are on the sphere: if any point of the boundary is not
on the sphere then it is on the hyperplane, on a line segment
between two other points of the boundary. This implies that
an extremal point of U satisfies that ‖Tc‖ = 
.

Note that y = c1n̂ + c2n̂⊥ for some c2 �= 0 and unit vector
n̂⊥ that is orthogonal to n̂. This implies that T∗

c = a1n̂+a2n̂⊥
where a2 �= 0 and a2

1 + a2
2 ≤ 
2. Suppose that n̂T T∗

c =
cos θ
, which implies that a1 = cos θ
. Since yT T∗

c = c1a1+
c2a2 = c1 cos θ
+c2a2, the cost is the maximum if c2 and a2
has the same sign and the a2

1 + a2
2 = 
2, that is, ‖T∗

c ‖ = 
.
Consequently an optimal solution must be an extreme
point of U.
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[2] L. Blackmore, B. Açıkmeşe, and D. P. Scharf, “Minimum landing error
powered descent guidance for mars landing using convex optimization,”
Amer. Inst. Astron. Aeron. J. Guid., Control Dyn., vol. 33, no. 4, pp.
1161–1171, 2010.

[3] J. S. Meditch, “On the problem of optimal thrust programming for
a lunar soft landing,” IEEE Trans. Autom. Control, vol. 9, no. 4,
pp. 477–484, Oct. 1964.

[4] A. Miele, The Calculus of Variations in Applied Aerodynamics and
Flight Mechanics in Optimization Techniques, G. Leitmann, Ed.
New York: Academic, 1962.

[5] A. R. Klumpp, “Apollo lunar descent guidance,” Automatica, vol. 10,
no. 2, pp. 133–146, Mar. 1974.

[6] U. Topcu, J. Casoliva, and K. D. Mease, “Minimum-fuel powered
descent for mars pinpoint landing,” J. Spacecraft Rockets, vol. 44, no. 2,
pp. 324–331, 2007.

[7] R. Sostaric and J. Rea, “Powered descent guidance methods for
the moon and mars,” in Proc. AIAA Guid., Navigat., Control Conf.,
Aug. 2005, no. AIAA 2005-6287.

[8] F. Najson and K. D. Mease, “Computationally inexpensive guidance
algorithm for fuel-efficient terminal descent,” J. Guid., Control, Dyn.,
vol. 29, no. 4, pp. 955–964, Jul. 2006.

[9] B. Steinfeldt, M. Grant, D. Matz, and R. Braun, “Guidance, navigation,
and control technology system trades for mars pinpoint landing,” in
Proc. AIAA Atmosph. Flight Mech. Conf. Exhibit, Aug. 2008, no. AIAA
2008-6216.

[10] S. Boyd and L. Vandenberghe, Convex Optimal. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[11] Y. Nesterov and A. Nemirovsky, Interior-Point Polynomial Methods in
Convex Programming. Philadelphia, PA: SIAM, 1994.

[12] J. Peng, C. Roos, and T. Terlaky, Self-Regularity: A New Paradigm for
Primal-Dual Interior-Point Algorithms. Princeton, NJ: Princeton Univ.
Press, 2001.

[13] J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones,” Optim. Methods Softw., vol. 17, no. 6,
pp. 1105–1154, 2002.

[14] C. D’Souza, “An optimal guidance law for planetary landing,” in Proc.
AIAA Guid., Navigat. Control Conf., 1997, pp. 1376–1381.
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