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Abstract— Hot air (Montgolfiere) balloons represent a
promising vehicle system for possible future exploration of
planets and moons with thick atmospheres such as Venus and
Titan. To go to a desired location, this vehicle can primarily
use the horizontal wind that varies with altitude, with a small
help of its own actuation. A main challenge is how to plan such
trajectory in a highly nonlinear and time-varying wind field.
This paper poses this trajectory planning as a graph search on
the space-time grid and addresses its computational aspects.
When capturing various time scales involved in the wind field
over the duration of long exploration mission, the size of the
graph becomes excessively large. We show that the adjacency
matrix of the graph is block-triangular, and by exploiting
this structure, we decompose the large planning problem into
several smaller subproblems, whose memory requirement stays
almost constant as the problem size grows. The approach is
demonstrated on a global reachability analysis of a possible
Titan mission scenario.

Index Terms— Dijkstra’s algorithm, Decomposition, Block-
triangular matrix, Reachability

I. INTRODUCTION

Recent studies have proposed the use of a hot air (Mont-
golfiere) balloon for possible exploration of Titan and Venus
because these bodies have thick haze or cloud layers that
limit the science return from an orbiter, and the atmospheres
would provide enough buoyancy for balloons [1], [2], [3].
One of NASA’s Outer Planet Flagship mission concepts
under study is the Titan Saturn System Mission, which would
be a joint NASA-ESA partnership that plans to employ
a Montgolfiere balloon along with a lake lander and an
orbiter [4]. This balloon would circle Titan, investigating
how Titan and Saturn operate as a system and determining
how far prebiotic chemistry has developed. In the study of
such mission, one of the important questions that need to be
addressed is: “What surface locations can the balloon reach
from an initial location, and if so how long would it take?”
We called this the global reachability problem, where the
paths from starting locations to all possible target locations
must be computed.

The balloon could be driven with its own actuation, but
due to its large inertia, slow dynamics, and the mass require-
ments, its actuation capability is fairly limited. It would be far
more efficient to take advantage of the wind field and “ride”
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on the wind that is much stronger than what the actuator
could produce. However, path planning in a flow field that is
much stronger than the vehicle’s actuation limits is very little
studied [5]. One of the challenges in dealing with planet’s
wind field is that it is driven by a complex combination
of many factors such as tidal effects, seasonal effects, and
natural modes of the atmosphere, and therefore is highly
non-linear and time-varying. It is possible to pose the path
planning problem as a graph search problem on a directed
graph [6], [7] by discretizing the space-time world [8], [9]
and the vehicle actuation.

However, the size of this graph becomes excessive when
considering the global reachability problem for a planetary
exploration. This is because for each dimension (e.g., lat-
itude, longitude, altitude, and time) the size of the graph
increases exponentially, and also because of the resolution
required to capture the various time scales of the wind field
while planning over the long mission duration.

To address this issue, this paper presents a decomposition
algorithm for reachability analysis of a time-varying graph.
Because the balloon only moves in the positive direction in
time, the adjacency matrix of the graph can be represented
with an upper block-triangular matrix, and this upper block-
triangular structure can be exploited to decompose a graph
search problem. Instead of solving a single large problem,
our algorithm solves subproblems sequentially whose size is
much smaller than the original problem. The new approach
therefore consumes much smaller amount of memory, which
also helps speed up the overall computation when the com-
puting resource has a limited physical memory compared to
the problem size.

The rest of the paper is organized as follows. Section II
presents the problem statements and how the graph is de-
fined. Section III presents the decomposition approach that
can handle graphs of much larger sizes than the naive ap-
proach. Finally, Section IV shows results from the numerical
simulation.

II. PROBLEM SETUP

A. Problem Statement

The problem of interest in this paper is to find the
minimum-time trajectory from an initial location r0 to each
of the ng goal locations ri, i = 1, . . . , ng , given a time-
varying wind model w(r, t). In the Titan mission, radio-
thermal generators could constantly provide a power, so that
the energy consumption is not considered as part of the cost.



Because the time constant of the vehicle dynamics (order
of seconds) is significantly smaller than the time constant
of the path planning problem (order of days), the vehicle
is assumed to move with the wind when no actuation is
applied [10]. The vehicle is also assumed to have vertical
and horizontal actuators that can generate additional velocity
u(t) with respect to the air, so that the model used in the
trajectory planning is written as

dr(t)
dt

= w(r, t) + u(t) (1)

where r(t) is a 3D position of the vehicle. The vertical
actuation is subject to the maximum sink and rise limits,
denoted by vrise and vsink, and the 2-norm of the horizontal
actuation is also subject to the maximum limit uh max

u(t) =
[

ux(t) uy(t) uz(t)
]T

− vsink ≤ uz(t) ≤ vrise (2)√
ux(t)2 + uy(t)2 ≤ uh max (3)

where the subscripts x, y, z represent easterly, northerly, and
vertically upwards direction respectively. Then, the problem
is written as

∀i = 1, . . . , ng : min
u(·)

tgi
s.t. (1), (2), (3)

r(t0) = r0

r(tgi
) = ri

where tgi
is the time of arrival at the ith goal ri. For

simplicity, the initial time t0 is assumed to be 0.
In the Titan wind field, the vertical wind is about 100

times weaker than the horizontal wind [11] and is also
much weaker than the vertical actuation capability of the
balloon (typically by heating or venting the air). Therefore,
we assume that the vertical motion of the Montgolfiere is
fully controllable subject to the maximum rise and sink rates.

B. Graph Construction

The wind field w(r, t) is obtained as an output of the
large-scale numerical simulation [11] and is highly non-
linear. In order to handle this nonlinearity, we convert the
trajectory planning problem into a graph search problem
on a discretized environment. Because the wind at a given
location differs depending on when the balloon reaches there,
a temporal as well as spatial discretization is performed.

1) Node: Let si denote an ith node in the graph. Each node
si is a function of the position (xi, yi, zi) and the time ti.
A uniform grid is used to represent the world, and let nx,
ny , nz , and nt respectively denote the number of cells in x,
y, z, and the time axes. Furthermore, let ∆x, ∆y, ∆z, and
∆t respectively denote the discretized step size along these
axes. For the global reachability problem, ∆x = 2π/nx and
∆y = π/ny in radians. Note that the Euclidean distance
of ∆x is different depending on the latitude in this case.
Define nr � nxnynz as the number of cell positions in the
environment, and N � nrnt as the total number of cells. The
subscript i for the graph node si ranges from i = 1, . . . , N .

x

y

Next cell si’

Start cell si

Integrated wind + horizontal actuation

Fig. 1. Integration in the horizontal plane to find the edge connection,
given a horizontal actuation.

2) Edge: If the wind were stationary, one could find
which adjacent cell the balloon will hit from a given cell by
looking only at the wind direction at the cell center. The edge
cost in this paper is a time of travel from one node to the next
and could be similarly computed by simply calculating the
distance to the next cell and dividing it by the wind velocity.
However, this does not apply to the time-varying wind case
because the wind directioin/magnitude could change as the
balloon travels.

In our approach, the first step is to consider the horizonal
plane and numerically integrate the velocity vector (1) over
time with a time step ∆t. To simplify the planning problem,
the actuation u(t) is assumed to be constant over this
duration. From each cell, we consider nh horizontal actuation
vectors that are different in magnitude and/or direction. For
each actuation vector, the integration starts from the center
of each cell si and goes until the integrated position reaches
one of the neighboring cells s′i, as shown in Figure 1. The
integration gives both the neighboring cell s′i that the vehicle
will go next and the time of travel from si to s′i. Let c(si)
denote this time of travel, which is also used as a cost.

To account for a continually weak wind field in which the
balloon cannot reach a neighboring cell, the integration is
terminated at time ntmax ∆t, so that c(si) < ntmax ∆t, ∀i.
In such a case, the vehicle is assumed to stay at the same
location for the first time step, reaching a node with the same
position but a different time ti + ∆t.

The next step is to consider the vertical motion. By
applying vertical actuation, cells above or below s′i may
also be reached. As stated before, the vertical range of the
Montgolfiere depends only on the maximum rise and sink
rates and the time of travel. Hence, the maximum altitude
increase and decrease possible in traveling from si to an
adjacent cell are

zrise(si) = vrisec(si), zsink(si) = vsinkc(si)

Let R(si) denote a set of reachable cells from si. Then,
using the information of node s′i, R(si) is characterized as

sj ∈ R(si) ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj = x′
i

yj = y′
i

zi − zsink(si) ≤ zj ≤ zi + zrise(si)
tj = ti + c(si)
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Fig. 2. Adjacency matrix.

From each node si, the connections are made to all
nodes in R(si) with the associated cost c(si). Note that the
discussion above is for one horizontal actuation vector, so
there will be multiple (up to nh) R(si) for each si when
forming the weighted adjacency matrix used in the graph
search. Let A denote this weighted adjacency matrix of the
graph.

C. Graph Search

Let ns denote the number of starting nodes. The problem
statement for the graph search is to find the shortest paths
from ns starting nodes si to all nr 3D locations. Once the
graph is constructed, it is straightforward to apply Dijkstra’s
algorithm to find the shortest paths. A matrix of size ns ×
nr can represent the minimum time of arrival at each 3D
location from each starting node. Let this matrix be denoted
by C∗. Its (p, q) element Cpq stores the time of travel from
the pth starting location to the qth 3D location, and is set to
be ∞ if there exists no such trajectory.

III. DECOMPOSITION APPROACH

The primary components of the time-varying wind field of
Titan include (a) seasonal changes in the global atmospheric
circulation driven by the changing solar forcing as Saturn
orbits the Sun (period of 1 Titan year, ∼30 Earth years), (b)
tidal effects driven by Titan’s eccentric orbit around Saturn
(period of 1 Titan day, ∼16 Earth days), and (c) small- and
large-scale waves occurring naturally in Titan’s atmosphere
on a range of time-scales. A potential future mission to
explore Titan would have a mission duration of 6–12 Earth
months, and capturing the time-varying wind field of various
time scales would require a large nt to be used in the graph.

Figure 2 shows the adjacency matrix of the graph, which
is of size N × N . Because the balloon only moves in
the positive direction in time, it can be represented with
an upper block-triangular matrix, by ordering the nodes in
terms of their time ti. Each block contains a snapshot of
the 3D world, whose size is nr × nr. With a large nt, the
memory requirement for graph construction and Dijkstra’s
algorithm becomes significant. However, this upper block-
triangular structure of the adjacency matrix can be exploited
to decompose the problem into several smaller subproblems
that uses much smaller memory.

A. Algorithm

Figure 3 schematically shows the main idea of the decom-
position algorithm. We assume the balloon starts at t = 0,
so that all the starting nodes are in the (1, 1) block. This
approach splits the weighted adjacency matrix A into several
submatrices Mk, k = 1, . . . , kmax, and repeatedly applies
Dijkstra’s algorithm to each submatrix. The result of each
subproblem can be represented by a matrix (shown with a
red rectangle) whose size is much smaller than the submatrix
used in the subproblem (marked with a blue rectangle). The
next subproblem is formed by appending to its submatrix
the small matrix obtained in the previous subproblem. This
process is repeated until all the submatrices are processed
or all the shortest paths from the starting nodes to the 3D
locations are found.

More formally, let br and bc be the number of row
blocks and column blocks in each submatrix Mk respectively.
Because each block has a size nr × nr, the submatrix Mk

consists of rows from (k−1)brnr +1 to kbrnr and columns
from (k − 1)brnr + 1 to (k − 1)brnr + bcnr of A, i.e.,

A =

⎡
⎢⎢⎢⎣

←− M1 −→
←− M2 −→

. . .
O ←− Mk max −→

⎤
⎥⎥⎥⎦ .

Note that bc is written as

bc = ntmax + br − 1.

Algorithm 1 shows the pseudo-code of the decomposition
algorithm. The first step (line 1) is to run Dijkstra’s algorithm
with M1 as a weighted adjacency matrix, which we call
Subproblem 1. The resultant shortest path costs (from ns

starting locations to all the cells considered in Subproblem
1) can be represented by a matrix D1 whose size is of ns-
by-bcnr. This D1 can be partitioned into two matrices

D1 =
[
E1 | F1

]
(4)

where E1 is a matrix of size ns-by-brnr, and F1 is a matrix
of size ns-by-(bc − br)nr. The matrix E1 corresponds to
cells with time steps between 0 and (br − 1)∆t, and the
optimal paths to these cells have been obtained. The matrix
F1 corresponds to cells with time stamps after br∆t, and not
all the options to reach them have been explored yet.

Using E1, the cost matrix C∗ is initialized. We first
reshape E1 into a three dimensional array of size ns-by-nr-
by-br, and then take the minimum along the third dimension,
obtaining a ns-by-nr matrix denote by C1. For the nodes
that cannot be reached from the starting cells, Dijkstra’s
algorithm is assumed to output ∞ as the cost. The cost matrix
C∗ is then set (line 3) to be

C∗ = C1.

The next subproblem uses M2 and considers times from
bc∆t to (2bc − 1)∆t, but it also includes ns starting nodes.
Therefore, in order to form the weighted adjacency matrix
of this subproblem, M2 must be augmented using the result
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Fig. 3. Adjacency matrix used in the sequence of subproblems. The blue rectangle shows the part of the adjacency matrix that are used in each subproblem.
The red flat rectangle represents the results obtained from the subproblems solved so far.

of the previous subproblem (line 8). Let Op,q denote a zero
matrix of size p-by-q. Then, the weighted adjacency matrix
used in Subproblem 2 is written as[

Ons,ns
F1 Ons,brnr

Obrnr,ns
M2

]
.

Note that an infinity matrix of width ns is appended from
the left. This is because the starting nodes at time t = 0 have
only outgoing edges. The matrix F1, obtained in the previous
subproblem, stores the cost of moving from the starting cells
to all cells at time between (br + 1)∆t and bc∆t.

After solving subproblem 2, the resultant shortest path
costs are represented by a matrix D2. The first ns columns
of D2 correspond to the starting cells, so that D2 can be
partitioned into D2 =

[
G2 | E2 | F2

]
, where G2 is a square

matrix of size ns, and E2 and F2 respectively have the same
sizes as E1 and F1 defined in (4).

From E2, the minimum path costs from starting locations
to each 3D location are computed, and C∗ is updated (line 9–
10). As shown in the Algorithm 1, the process is repeated
until all the rows of adjacency matrix A are used, or all
paths to the 3D locations are found and C∗ has no non-∞
elements.

IV. SIMULATION RESULTS

A. Setup

The results in this section were generated using the wind
field model of Titan developed by [11]. All the algorithms
are implemented in MATLAB. The simulation was run
on a desktop computer with Core 2 Duo 2.40 GHz and
4 GB of RAM running 64-bit Linux and 64-bit MATLAB.
Dijkstra’s algorithm was implemented as a MEX function
using Fibonacci heaps [12]. The following parameters were
used:

nx = 36 (∆x = 10 [deg])
ny = 18 (∆y = 10 [deg])
nz = 20 (∆z = 500 [m])

Algorithm 1 Decomposed Dijkstra for global reachability
1: Solve for shortest paths with weighted adjacency matrix

M1. Obtain a matrix [E1 | F1] with the minimum cost.
2: From E1, compute the minimum path cost C1 from ns

starting locations to each 3D location.
3: Initialize the cost matrix C∗ := C1.
4: for k = 2 to kmax do
5: if all elements of C∗ are not ∞ then
6: break
7: end if
8: Solve for shortest paths with weighted adjacency ma-

trix

[
Ons,ns Fk−1 Ons,brnr

Obrnr,ns
Mk

]
. Obtain a matrix[

Gk Ek Fk

]
with the minimum cost.

9: From Ek, compute the minimum path cost from
starting locations to each 3D location Ck.

10: Update the cost matrix C∗ := min(C∗, Ck). Note that
this min operation is element-wise.

11: end for

nt = 520 (∆t = 0.02 [Titan day])
ns = 24, ng = 12960

ntmax = 100
br = 10, bc = 109

vsink = 0.6 [m/s], vrise = 0.3 [m/s]
uh max = 0.25 [m/s]

Thus, nr = 12960 in Figure 2. Because we consider a global
reachability problem, the number of goals ng in the graph
search is the same as nr. If this were solved as a single graph
search problem, the graph would contain about 7 million
nodes with billions of edge connections. The starting altitude
is set to be 5000 m. It is also assumed that the horizontal
actuation is either zero or of full magnitude in one of the 8
directions, so that nh = 9.

Figure 4 shows the time plot of the horizontal wind wx(t)



Fig. 4. Time-varying wind field

and wy(t) at various longitudes, latitudes, and altitudes over
120 days. Depending on the 3D location, both the magnitude
and its variation are very different. Note also that the wind
could be much stronger than the horizontal actuation limit.

B. Results

Figure 5 shows reachability plots from different starting
locations to all the cells at altitude 250 m. The starting cell is
marked with “S”. The color of each cell shows the minimum
time it takes to move from the start to each cell. Note that
depending on where the balloon starts, the reachability map
varies significantly.

Figure 6 shows the percentage of the areas of Titan’s
surface that would be reachable in a given time. For example,
50% on the y axis means that 50% of the points on
Titan’s surface could be reached in a given time if set as
a destination; it does not mean that the balloon would sweep
over 50% of the Titan surface in this time. The plot has 24
different starting locations with the following combination
of longitude and latitude.

• 4 longitudes (175◦W, 85◦W, 5◦E, 95◦E)
• 6 latitudes (85◦S, 45◦S, 15◦S, 15◦N, 45◦N, 85◦N)

Because the wind field changes over the latitude much more
than the longitude, the lines corresponding to the same
latitude are plotted with the same color. In fact, the lines
with the same color have a similar trend: if starting at 15◦S
(shown in red), it could initially reach only limited areas,
but the reachable area grows rapidly after a few months; if
starting near the southern pole (85◦S), the reachable area
does not grow as fast as others.

Figure 7 shows several trajectories from a start location
of (5◦S, 5◦E) to 3 different goals G1(5◦S, 155◦E), G2(75◦S,
85◦W), and G3(85◦N, 85◦E). The size of the circles repre-
sents the elapsed time from start, and the color of the circles
represents the altitude of the trajectory. The background color
represents the same reachability map shown in Figure 5(b).
Note that because of the nonlinear and time-varying wind
field, the minimum-time trajectories involve several vertical
actuation steps and are far from straight lines.

(a) From 85 degrees north, 5 degrees east

(b) From 5 degrees south, 5 degrees east

(c) From 85 degrees south, 5 degrees east

Fig. 5. Reachability plots of different starting locations. The color bar on
the left shows the time to reach each cell at an altitude of 250 m (in days).

C. Comparison with the Approach without Decomposition

This subsection shows the computational aspects of the
proposed approach. The same reachability analysis was per-
formed without the decomposition.

Figure 8 compares the memory required to store the
weighted adjacency matrix. The x axis is the number of dis-
cretized time steps involved in the problem. The line with ×
marks shows the memory usage for the weighted adjacency
matrix when solving each subproblem of the decomposition
algorithm. The line with ◦ marks shows the cases without
the decomposition. Without the decomposition, the memory
usage grows unboundedly, but with the decomposition, it
stays almost constant after the second subproblem.

Figure 9 compares the computation times for the two
approaches. Figure 9(a) shows the time spent by Dijkstra’s
algorithm, and Figure 9(b) is for the total computation
including graph construction and book keeping. Without
decomposition, the computation time increases drastically
beyond time step 100. If the global reachability analysis on
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Fig. 7. The trajectories from a start to 3 different goals. The left color bar
shows the time to reach each cell an altitude of 250 m. The right color bar
shows the altitude of the trajectory.

a higher resolution grid is required, a computer with more
CPUs and more memory (e.g., supercomputer is typically
used in the planetary atmospheric simulation) could be used.
In such a case, the algorithm presented in the paper will
bring the same computational savings as shown here.

Note that the decomposition approach does not re-
move/add any nodes/edges in the graph and hence does
not introduce suboptimality. Therefore, it produced the same
solution that was obtained without decomposition.

V. CONCLUSION

This paper presented a decomposition algorithm for global
reachability analysis on a space-time grid. By exploiting
the upper block-triangular structure, the planning problem
is decomposed into smaller subproblems, which is much
more scalable than the original approach. This enabled us
to analyze potential Titan mission scenarios of long duration
that would require excessive amount of memory when solved
as a single graph search problem.
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