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Abstract—Recent studies have proposed the use of a hot-air (Mont-
golfière) balloon for possible exploration of Titan, Mars and Venus.
One of NASA’s Outer Planet Flagship mission concepts is the Titan
Saturn System Mission (TSSM), which would be a joint NASA-ESA
partnership that plans to employ a Montgolfière along with a lake
lander and an orbiter. This Montgolfière would circle Titan, investigating
how Titan and Saturn operate as a system and determining how far
prebiotic chemistry has developed. This paper provides a new method
to analyze global path planning with balloons on Titan. The main
objective of this study is to determine whether the balloon could reach a
particular location of interest from a given initial position at its insertion
point in the atmosphere using the wind fields on Titan. This study is
the first comprehensive analysis and quantitative assessment of balloon
guidance in Titan that proactively uses wind for global path planning. The
paper will investigate and characterize the guidance and path-planning
performance of Montgolfière balloons in Titan’s atmosphere for lower-
atmosphere and surface exploration in the presence of variable wind
fields using TitanWRF(Titan Weather Research and Forecasting) model.
The study focuses on determining the altitude profile that a balloon
could follow, using variable wind fields, in order to reach its target most
quickly. Our results show that a simple unpropelled Montgolfière without
horizontal actuation would be able to reach a broad array of science
targets within the constraints of the wind field. The study also indicates
that even a small amount of horizontal thrust allows the balloon to reach
any area of interest on Titan, in a fraction of the time needed by the
unpropelled balloon. The results show that using the Titan wind field
allows a balloon to significantly extend its scientific reach, and that a
Montgolfière (unpropelled or propelled) is a highly desirable architecture
that can significantly enhance the scientific return of a future Titan
mission.

I. INTRODUCTION

Titan is ideally suited for aerial vehicle exploration due to its high
atmospheric density, its low gravity, and its widely spaced sites of
interest. In the case of planets and moons with atmospheres, such
as Titan and Venus, a number of authors have proposed the use
of aerial systems that can combine extensive coverage with high-
resolution data collection and in-situ science capabilities. [1], [2], [3],
[4]. Recent studies have proposed the use of a Montgolfière balloon
for possible exploration of Titan, Mars and Venus[2], [3], [4]. A
Montgolfière, also known as a hot air balloon, maintains buoyancy
by heating the atmospheric gas inside the balloon. Such a balloon
can control its altitude by changing the heating rate or venting gas,
but has no actuation capability in the horizontal plane. The motion of
the Montgolfière in the horizontal plane is driven by the local winds.
However, it may be possible for the balloon to use the difference
in winds at different altitudes to guide itself to a desired location.
This approach relies on predictive models of the winds on a planet
or moon, such as Titan, which vary both spatially and temporally.
These models are known as General Circulation Models, and in
recent years much attention has been devoted to their development,
for example [5], [6], [7], [8], [9], [10], [11], [12]. In our research we
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have chosen to make use of the work of [5], who have developed
a general purpose numerical model of planetary atmospheric and
climate dynamics known as TitanWRF. This general model has been
specialized to generate global three-dimensional wind models for
Titan. In planning an aerial mission in Titan, it is extremely important
to assess how the moon-wide wind field can be used to extend the
navigation capabilities of a balloon, so that widely dispersed science
targets can be visited during the mission life time, thereby enhancing
the scientific return of the mission.

One of the important questions that needs to be addressed is: “What
surface locations could the balloon reach from an initial location,
and if so how long would it take?” One of the challenging problems
in balloon guidance is its limited control authority. In this study we
will develop new path planning methods for exploration balloons that
proactively use the wind field for guidance purposes. The primary
objective of this study is to demonstrate the advantages of this new
approach over passive floating balloons and to answer mission-level
questions such as how long it takes to reach potential science targets,
how much fuel/energy it consumes, and how much uncertainty
the planned path would involve. The resultant product will be a
general purpose guidance algorithm that can be applied to exploration
balloons on any moon/planet with atmosphere, including Titan, Mars,
Venus, as well as the gas giants (Jupiter, Saturn, Uranus and Neptune).
This study will be the first comprehensive analysis and quantitative
assessment of balloon guidance that proactively uses wind for global
path planning. Unlike existing studies, which are limited to linear
wind fields and cannot incorporate more realistic global wind fields
with sufficient resolution, our approach will address stochastic, non-
linear, and time-varying wind fields. Through this wind-assisted
guidance, we expect to significantly extend the range of the balloon
and to reach science targets more quickly, compared to the simple
floater. This approach would also enable repeated visits to a site of
interest (“loitering”) that would require significantly less fuel/energy
compared to the simple guidance strategy. Results could provide a
breakthrough approach for exploration of any planet or moon with
significant atmosphere.

It is important to note that the study did not focus on control
strategies for the balloon to track trajectories. This work primarily
focus on high level guidance architecture with simplified dynamics.
A future work can be dedicated on studying the full dynamics of
the system and control strategies that drive the balloon to desired
guidance trajectories in presence of all kinds of disturbances.

In the analysis, these options have been explored: a free floater, an
unpropelled balloon with altitude control, and a propelled balloon.
For a given fixed Titan wind field, we have investigated what regions
on the surface of Titan could be reached by the above balloon options,
and how much time would be required to reach these regions. Results
to date have shown that the regions reachable by an unpropelled
Montgolfière depend critically on the latitude/longitude insertion
point of the vehicle in Titan’s atmosphere, while a propelled balloon
can essentially reach any point on the surface of Titan regardless of
the initial insertion state.

The rest of the paper is organized as follows: We will first describe
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Titan and its wind field model briefly. We will then present the
problem statement and give an overview of Graph Search for Path
Planning and Global Reachability. In Section IV we describe our
graph generation approach for deterministic, static (time-invariant)
wind fields only. In Section V we generalize the time-invariant
approach to deterministic, but time varying wind fields. In Section VI
we describe an approach to solving path planning problem in the pres-
ence of stochastic uncertainty in the wind field. Finally, Section VII
deals with “loitering” problem where repeat visits of an interesting
site is required.

II. TITAN AND ITS WIND MODEL

Titan is the largest moon of Saturn and the only moon in our
solar system to have a substantial atmosphere. The atmosphere
is poorly understood and obscures the surface, leading to intense
speculation about Titan’s nature. The successful entry of the Huygens
probe into Titan’s thick nitrogen-methane atmosphere has revealed
a new world, strangely Earth-like, with methane playing the role of
water, low temperature ice substituting for rock, and organic aerosols
precipitated from the atmosphere taking the place of soil. Streams of
liquid methane flow over the icy bedrock of a world nearly frozen in
time shortly after its formation. This complex world is very similar
to Earth in many ways. Studying Titan and its prebiotic chemistry
can give clues to the origin of life.

The work presented in this paper is based on aerodynamic models
that characterize balloon performance in Titan using TitanWRF (Titan
Weather Research and Forecasting) model.

TitanWRF is a global model of Titan’s atmosphere, extending
from the surface to ∼400 km. Based on a global version of the
terrestrial WRF (Weather Research and Forecasting) model, Titan-
WRF basically solves the primitive equations of atmospheric physics
(“F = ma” in a rotating frame plus conservation of mass and
energy) discretized onto a three-dimensional grid. As described in
Ref. [5], TitanWRF has been fully adapted to Titan conditions (low
gravity, slow rotation rate, atmospheric composition etc.) and is
typically run with∼5 degrees between horizontal grid points and with
55 vertical levels (spaced more closely within Titan’s troposphere,
below ∼40 km). The model includes parameterizations of turbulent
mixing, sub-surface heat diffusion, surface energy and momentum
exchange, and a radiative transfer scheme for Titan’s thick, hazy
N2-CH4 atmosphere. TitanWRF includes the seasonal and diurnal
variation in incident solar energy at each location. Finally, TitanWRF
includes the gravitational accelerations due to Titan’s eccentric orbit
around Saturn. This produces a time-dependent change (“tide”) in
the gravitational forcing which modifies horizontal wind directions
and speeds, particularly in the lower atmosphere where background
wind speeds are quite low. We define seasons using Titan (Saturn’s)
angular position in its orbit around the Sun, i.e. its planetocentric
solar longitude [Ls]. Ls = 0 [deg] is northern spring equinox,
Ls = 90 [deg] northern summer solstice, and so on. Perihelion (the
time at which Saturn and thus Titan are closest to the Sun) occurs at
Ls = 278 [deg] thus during northern winter / southern summer.

III. PATH PLANNING APPROACH

In this study we present a new method for global path planning
with Montgolfières that solves both the problems of path planning
and reachability [13] . The new method first performs a principled
simplification and decoupling of the dynamics of the Montgolfière.
This enables us to perform an efficient discretization of the search
space, converting the planning problem into a graph search problem.
We then use Dijkstra’s algorithm [14] to calculate the minimum-time
path from the start location to every possible location in the graph.
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Fig. 1. Coordinate frame definitions. Degrees longitude is denoted x, degrees
latitude is denoted y and z is the altitude from the surface of the planet. The
velocities wx, wy and wz are defined in a Cartesian coordinate frame fixed
to the local surface tangent.

This solves the reachability problem, and then, for a given desired
location, we can extract the minimum-time altitude profile to the
goal, thereby solving the path planning problem. In this study we
show planned paths and reachability maps for a number of scenarios
on Titan. The proposed path planning method is a general purpose
guidance algorithm that can be applied to exploration balloons on
any planet or moon with atmosphere.

We assume that we have a general set of dynamic equations for
the Montgolfière in a time-varying wind field of the form:

ẋ(t) = f(x(t),u(t), t), (1)

where u(t) are the heating, venting and horizontal actuation control
inputs applied at time t, and x(t) is the state of the Montgolfière
at time t. Equations in this form are derived by [15] using the
thermal and dynamics balloon models of [16]. In this case, the state
includes the temperature and volume of the balloon, as well as the
three-dimensional position and velocity of the Montgolfière, which
we denote by r and ṙ respectively. The dynamics in (1) rely on
a predictive model of the winds at any location r and time t. We
assume we have such a model in the general form w(r, t). Here,
position is defined in a spherical coordinate frame such that:

r ,

24xy
z

35 , (2)

where x is in degrees longitude, y is in degrees latitude, and z is
altitude from the surface of the planet. Wind velocity is defined in
a Cartesian coordinate frame fixed to the local surface tangent such
that:

w(r, t) ,

24wx(r, t)
wy(r, t)
wz(r, t)

35 , (3)

where wx, wy and wz are the velocities in the easterly, northerly and
vertically upwards directions respectively. The coordinate frames are
shown in Figure 1.

The path planning and reachability problem may now be stated as
follows:

Problem 1: Given a Montgolfière with dynamics f(·) initially at
location r0, and a wind model w(·), determine, for every possible
end location rf , the minimum time to reach rf and the sequence of
control inputs u(·) that achieves this minimum.
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A. Related Work

The problem of path planning for Montgolfières was studied
by [15], [17]. In [15], the authors assume that wind fields vary linearly
in space and are fixed in time. Given this assumption, they solve the
optimal control problem to find the sequence of heating inputs that
takes the balloon from its initial state to the goal. The optimal control
approach is inherently limited to linear wind fields, whereas the fields
predicted by global circulation models are highly nonlinear. In our
previous work we extended this approach to the case where the wind
field consists of a discrete, finite set of layers, each of which has
a constant wind direction and magnitude[17]. In this case the wind
varies with altitude, but not with horizontal location. In the present
paper we provide a new method that can handle arbitrary wind fields
that vary nonlinearly in the horizontal and vertical directions, as well
as in time. Such a capability is necessary given that the available
General Circulation Models predict a strong dependence of the winds
on all three of these parameters.

A problem that has received considerable attention is that of path
planning for autonomous underwater vehicles (AUVs) in current
fields[18], [19], [20], [21], [22], [23]. While the AUVs are assumed
to have significant horizontal actuation capabilities, the currents have
a significant effect on the motion of the AUV, meaning that this
problem shares some aspects of the Montgolfière path planning
problem. The approach of [23] poses the path planning problem as
a nonlinear optimization problem, and uses a ‘swarm’ of feasible
paths to provide multiple initial guesses to an optimizer such as
local random search, or simulated annealing. The performance of
such optimizers is highly dependent on the quality of the initial
guess, and in the Montgolfière case finding feasible paths to use
as guesses is very challenging. Alternative approaches use a spatial
discretization approach combined with a variety of search techniques
to solve the planning problem. [18] uses a genetic algorithm to
search for the optimal path in a two-dimensional field; however,
this search algorithm does not guarantee convergence to a global
(or even feasible) solution, and does not solve the reachability
problem. [19] instead use A* graph search to guarantee that the
optimal path is found; however, this work is restricted to a two-
dimensional, time-invariant current field and assumes that the AUV
has significant actuation capabilities in the horizontal plane. [20] use
a fast-marching search technique to find optimal paths; however, these
approaches can return infeasible plans if the current is stronger than
the actuation capability of the AUV[22]. This is clearly the case
with a Montgolfière, which has no horizontal actuation capability.
[22] extends fast-marching techniques to the case where currents are
stronger than actuators, however it is not clear that this extends to
the case of a Montgolfière balloon; in addition [22] considers only
the path planning problem and not the reachability problem.

B. Simplification of Dynamics

The Montgolfière planning problem is complex, because it takes
place in a three-dimensional environment. We can, however, simplify
the problem using a partial decoupling of the Montgolfière dynamics.
This decoupling is based on the following assumptions:

Assumption 1: The altitude of the Montgolfière is fully control-
lable, subject to maximum rise and sink rates, denoted vrise and vsink
respectively.

Assumption 2: The horizontal velocity of the Montgolfière is pro-
portional to the local horizontal wind velocity at all times.

Assumption 1 comes from the observation that the vertical control
authority of the Montgolfière is large compared to the vertical winds
predicted by the global circulation models of [5]. This means we can
assume that a separate altitude controller exists that issues heating and

venting commands to reject wind disturbances and to drive the Mont-
golfière to a desired altitude setpoint. This allows us to ignore the
effects of vertical winds and the complicated thermodynamic model
used by [15] to describe the vertical motion of the Montgolfière.

Assumption 2 comes from [15], who use the following relationship
for the horizontal dynamics of the Montgolfière:

ṙ = γ · w(r, t). (4)

where γ is a measure of the drag of the Montgolfière in the
horizontal plane. These dynamics mean that, in the horizontal plane,
we need only consider the local wind velocity. We do not need to
consider any other thermal or dynamic state of the Montgolfière.
This simplification, along with that given by Assumption 1 is critical
in efficiently generating a discretized graph, as described in the
following sections.

In addition to the model of [15], we assume that the vehicle has
horizontal actuators that can generate additional velocity u(t) with
respect to the air. Using Assumption 1 and setting γ = 1, we have:

ṙ(t) = w(r, t) + u(t), (5)

and

u(t) =
ˆ
ux(t) uy(t) uz(t)

˜T
− vsink ≤ uz(t) ≤ vrise (6)q
ux(t)2 + uy(t)2 ≤ uhmax, (7)

where uhmax is the maximum achievable horizontal actuation.
The key idea to solving a discretized approximation of Problem 1

is to perform an efficient discretization of the search space, converting
the planning problem into a graph search problem. We then use
Dijkstra’s algorithm to calculate the minimum-time path from the
start location to every possible location in the graph.

The graph generation problem may be stated as follows:
Problem 2: Generate a graph G consisting of a set of nodes S,

where each node si ∈ S consists of an index i and a position r(si),
a set of arcs between nodes, and a weighted adjacency matrix A
defined such that A(i, j) is the cost to traverse the arc from si to sj .
A(i, j) =∞ implies that no arc exists between si and sj .

Given a graph G, Dijkstra’s algorithm finds the minimum cost path
from a start node to all other nodes in the graph. The running time of
Dijkstra’s algorithm scales with the square of the number of nodes,
and is hence an appealing algorithm even for large graphs. In this
paper we use Dijkstra’s algorithm to find the minimum-time path
between the node nearest to the initial location of the Montgolfière,
denoted si, and all other nodes. This solves a discretized approx-
imation to the reachability problem. Given the reachability results,
the path planning problem can be solved simply, by extracting the
path p ∈ ZN corresponding to the particular target node sl. This
path consists of a sequence of node indices such that p(1) = i and
p(N) = l.

The above approach was considered for the following cases:

• Deterministic, time-invariant(static) wind fields,
• Deterministic, time-varying wind fields,
• Stochastic, time-varying wind fields.

IV. TIME INVARIANT WIND FIELDS

In this section we consider time-invariant wind fields, such that
w(r, t) = w(r, T ) for some fixed T and all t. In generating
the nodes of the graph, we choose to discretize space using a
uniform grid, where adjacent nodes are separated by ∆x in longitude,
∆y in latitude, and ∆z in altitude. The decoupling described in
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Section III-B enables us to consider the discretization of the three-
dimensional search space first in the horizontal plane, and then in
the vertical plane. We also discretize the horizontal actuation into
nh vectors that are different in magnitude and/or direction. Thus
each node si, known as the source node, corresponds to a particular
location r and actuation vector u(si).

The weighted adjacency matrix A is populated as follows. For
every node si, we use the wind model to determine the local wind
w(r(si), T ). Considering the horizontal plane first, from (4), the
horizontal velocity of the Montgolfière can be written as:

ṙ(si) = w(r(si), T ) + u(si). (8)

We discretize the direction of the Montgolfière velocity in the
horizontal plane into one of eight segments, as shown in Figure 2.
Which of these segments the local wind velocity falls into determines
the cell that the Montgolfière will transition to if no vertical actuation
is applied, which we denote s′i. By assuming that the wind is constant
in the interval until the next cell is reached, the time taken to travel
from si to s′i is given by:

∆t(si) =
dist(r(si), r(s′i))

||w(r(si), T ) + u(si)||
. (9)

Here, dist(·, ·) is a function that returns the cartesian distance
between two points in a spherical coordinate frame, while || · || is the
standard vector 2-norm.

By applying vertical actuation, cells above or below s′i may also
be reached. By Assumption 1, the vertical range of the Montgolfière
depends only on the maximum rise and sink rates and the time
available. Hence the maximum altitude increase and decrease possible
in traveling from si to an adjacent cell are:

zrise(si) =
vrise

∆t(si)
zsink(si) =

vsink
∆t(si)

. (10)

The set of cells R(si) for which an arc exists between si and sj ∈
R(si) is therefore given by:

sj ∈ R(si)⇐⇒

8><>:
x(sj) = x(s′i)

y(sj) = y(s′i)

z(s′i)− zsink ≤ z(sj) ≤ z(s′i) + zrise(si).

(11)

We can now populate the weighted adjacency matrix A. Since
Problem 1 requires us to find the minimum time to get from every
node to every other node, the cost on an arc must be the time taken
to traverse that arc. The matrix A is therefore populated as follows:

A(i, j) =

(
∆t(si) sj ∈ R(si)

∞ sj /∈ R(si).
(12)

Notice that, even though we have discretized space and wind direc-
tion, we have retained time and wind magnitude as continuous vari-
ables. This ensures that arbitrarily large variations in wind magnitude
can be captured without requiring an intractably large number of grid

cells. This is essential, since the PlanetWRF wind model predicts
winds that vary in magnitude over several orders of magnitude.

In what follows, we define a Titan [solar] day as the time taken for
Titan to rotate once (roughly 16 Earth days). Titan is tidally locked
which means that it keeps roughly the same face to Saturn at all
times, so one Titan day is also the time taken for it to orbit Saturn.
Titan is in orbit around Saturn so a Titan year [∼673 Titan days] is
the same as a Saturn year and lasts roughly 30 Earth years. We also
define a Titan hour as 1/24th of a Titan day.

We describe seasons using Titan (Saturn’s) angular position in its
orbit around the Sun, i.e. using its planetocentric solar longitude Ls.
Ls = 0 is the northern spring equinox, Ls = 90 the northern summer
solstice, and so on. Perihelion (the time at which Saturn and thus
Titan are closest to the Sun) occurs at Ls = 278, during the northern
winter / southern summer.

a Titan [solar] day as the time taken for Titan to rotate once
(roughly 16 Earth days). Titan is tidally locked which means that
it keeps roughly the same face to Saturn at all times, so one Titan
day is also the time taken for it to orbit Saturn. Titan is in orbit
around Saturn so a Titan year [∼673 Titan days] is the same as a
Saturn year and lasts roughly 30 Earth years. We also define a Titan
hour as 1/24th of a Titan day.

A. Results

In this section, we give results demonstrating the graph search
algorithm in the time-invariant wind field case. For the following
results, winds at time Ls = 90 [deg] were used, corresponding
to summer solstice. The following parameters were used: Figures
4(a), 4(b) , 4(c), and 4(d) show reachability maps for Titan with
no horizontal actuation (only vertical control) at 4 different starting
locations: the north pole, 25◦N, the equator and 45◦S. The color in
a cell shows how much time it takes for the optimal path from the
starting location ‘S’ to all cells across the moon. The color white
on the figure shows that the cell is not reachable for that particular
starting location. When there is no horizontal actuation, with only the
ambient winds and altitude control available to move the balloon, it
may take many days to get to a destination of interest, sometimes
up to 200 days, and sometimes the location is simply not reachable.
Figures 5(a), 5(b) , 5(c), and 5(d) show global reachability maps for
static wind fields with a horizontal actuation of 1 m/s. As seen in
Fig. 5, unlike the case where there is no horizontal actuation, the
entire moon is reachable from all 4 starting locations when there is
horizontal actuation of 1 m/s. It is also interesting to note that, for
this actuation level, the time taken to reach a given cell is roughly a
factor of 6 shorter.

V. TIME VARYING WIND FIELDS

This section presents the approach and results with a time varying
wind field. Because the wind at a given location differs depending
on when the balloon reaches it, a temporal as well as spatial
discretization is performed. One challenge is that the size of the graph
becomes excessive when considering the global reachability problem
for planetary exploration. This is because for each dimension (e.g.,
latitude, longitude, altitude, and time) the size of the graph increases
exponentially, and also because of the resolution required to capture
the various time scales of the wind field while planning over the long
mission duration. In such cases, the memory requirement for graph
construction and the search algorithm becomes fairly significant.

To address this issue, a decomposition algorithm for reachability
analysis of a time-varying graph has been developed. Because the
balloon only moves in the positive direction in time, the adjacency
matrix of the graph can be represented with an upper block-triangular
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Fig. 4. Global reachability map with no horizontal actuation and static wind
field
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Fig. 5. Global reachability map with with 1 m/s horizontal actuation and
static wind field
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matrix, and this upper block-triangular structure can be exploited to
decompose a graph search problem. Instead of solving a single large
problem, our algorithm solves subproblems sequentially whose size is
much smaller than the original problem. The new approach therefore
consumes much smaller amounts of memory, which also helps speed
up the overall computation when the computing resource has a limited
physical memory compared to the problem size.

A. Problem Statement – Decomposition Algorithm

Let ns denote the number of starting nodes. Each node si is a
function of the position (xi, yi, zi) and the time ti. A uniform
grid is used to represent the world, and we let nx, ny , nz , and
nt respectively denote the number of cells in x, y, z, and the time
axes. We define nr , nxnynz as the number of cell positions in
the environment, and N , nrnt as the total number of cells. The
problem statement for the graph search is to find the shortest paths
from ns starting nodes si to all nr 3D locations. Once the graph
is constructed, it is straightforward to apply Dijkstra’s algorithm to
find the shortest paths. A matrix of size ns × nr can represent the
minimum time of arrival at each 3D location from each starting node.
Let this matrix be denoted by C∗. Its (p, q) element Cpq stores the
time of travel from the pth starting location to the qth 3D location,
and is set to be ∞ if there exists no such trajectory.

The primary components of the time-varying wind field of Titan
include (a) seasonal changes in the global atmospheric circulation
driven by the changing solar forcing as Saturn orbits the Sun (period
of 1 Titan year, ∼30 Earth years), (b) tidal effects driven by Titan’s
eccentric orbit around Saturn (period of 1 Titan day, ∼16 Earth days),
and (c) small- and large-scale waves occurring naturally in Titan’s
atmosphere on a range of time-scales. A potential future mission to
explore Titan would have a mission duration of 6–12 Earth months,
and capturing the time-varying wind field of various time scales
would require a large nt to be used in the graph.

Figure 6 shows the adjacency matrix of the graph, which is of size
N ×N . Because the balloon only moves in the positive direction in
time, it can be represented with an upper block-triangular matrix, by
ordering the nodes in terms of their time ti. Each block contains a
snapshot of the 3D world, whose size is nr×nr . With a large nt, the
memory requirement for graph construction and Dijkstra’s algorithm
becomes significant. However, this upper block-triangular structure
of the adjacency matrix can be exploited to decompose the problem
into several smaller subproblems that use far less memory.

We assume the balloon starts at t = 0, so that all the starting
nodes are in the (1, 1) block. This approach splits the weighted
adjacency matrix A into several submatrices Mk, k = 1, . . . , kmax,
and repeatedly applies Dijkstra’s algorithm to each submatrix. The
result of each subproblem can be represented by a matrix whose size
is much smaller than the submatrix used in the subproblem. The next
subproblem is formed by appending to its submatrix the small matrix
obtained in the previous subproblem. This process is repeated until
all the submatrices are processed or all the shortest paths from the
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Fig. 7. The trajectories from a start to 3 different goals (G1, G2, G3).
Trajectories are marked with circles whose color represents the altitude. The
corresponding color bar is given at the right. The left color bar shows the
time to reach each cell at an altitude of 250 m (in Earth days).

starting nodes to the 3D locations are found. A detailed discussion
of the algorithm is available in [24].

B. Simulation Results

Figure 7 shows several trajectories from a start location of (5◦S,
5◦E) to 3 different goals G1(5◦S, 155◦E), G2(75◦S, 85◦W), and
G3(85◦N, 85◦E). The size of the circles represents the elapsed time
from start, and the color of the circles represents the altitude of the
trajectory. Note that because of the nonlinear and time-varying wind
field, the minimum-time trajectories involve several vertical actuation
steps and are far from straight lines.

Figure 8 shows the percentage of the areas of Titan’s surface
that would be reachable in a given time with 4 different horizontal
actuation levels (0.0 m/s, 0.25 m/s, 0.50 m/s, and 1.0 m/s). For
example, 50% on the y axis means that 50% of the points on Titan’s
surface could be reached in a given time if set as a destination; it
does not mean that the balloon would sweep over 50% of the Titan
surface in this time. The plots have 24 different starting locations
with the following combinations of longitude and latitude.
• 4 longitudes (175◦W, 85◦W, 5◦E, 95◦E)
• 6 latitudes (85◦S, 45◦S, 15◦S, 15◦N, 45◦N, 85◦N)

Because the wind field varies far more with latitude than with
longitude, the lines corresponding to the same latitude are plotted
with the same color and show similar trends: for example, a balloon
starting at 15◦S (shown in red) can initially reach only limited areas,
but the reachable area grows rapidly after a few months, whereas for
a ballon starting near the southern pole at 85◦S (shown in blue) the
reachable area does not grow as fast with time.
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(a) 0.0 m/s horizontal actuation.
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(b) 0.25 m/s horizontal actuation.
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(c) 0.50 m/s horizontal actuation.
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(d) 1.0 m/s horizontal actuation.

Fig. 8. Percentage of reachable area given a starting location. Ls = 0 [deg].

It is clear that both the reachable area and the time of arrival
improves dramatically by allowing more horizontal actuation. Also

note that with no horizontal actuation (e.g., 0.0 m/s), some of the
area is not reachable.

VI. UNCERTAIN WIND FIELDS

In practical applications, the wind vector field is not known exactly
and may deviate significantly from the wind velocities estimated by
the TitanWRF model. This section describes how the problem frame-
work may also be adapted for uncertain wind fields for probabilistic
solution methods. Our primary contribution in this scenario is in
appropriately formulating the problem as a Markov Decision Process
(MDP), for which a number of solution methods may be applied.

A. Approach

With uncertain wind fields, the transition from each state is no
longer deterministically specified by the wind model as it was in
the graph solution above. From a given state si, the next state,
dubbed s′i, may be considered a random variable and a corresponding
probability distribution for s′i can be constructed over all horizontally
adjacent cells. Given these transition probabilities from all states,
we wish to select the actions (horizontal and vertical actuation
of the Montgolfière) that minimizes time-to-goal. This optimality
problem is thus naturally posed as a Markov Decision Process (MDP)
(S,A, P,R), where: S represents the set of possible states, i.e.,
(x, y, z) locations, of the Montgolfière; these are the same discretized
longitude / latitude / altitude cell positions as defined for the graph G
in Section IV.A is the set of actions available from each state, namely
the combination of horizontal and vertical actuation options. P gives
the transition probabilities between states under a given action: given
current state si and action a, Pa(si, sj) = Pr[s′i = sj |si, a]. R
defines the expected immediate reward for each transition and each
action a. Since we wish to optimize for least travel time, we use
a reward of negative travel time (or, equivalently, a cost of positive
travel time).

In order to model the wind uncertainty, we choose to decompose
it into direction and magnitude components and assign independent
distributions, each with an expected value equal to the field model
value. Let w̃(ri, t) denote the (random) wind velocity at position
ri at time t and w(ri, t) denote the velocity given by the wind
field (TitanWRF) model. The direction and magnitude of w̃(ri, t)
are represented respectively by θi and wi. The wind direction θi is
of primary importance as it principally determines the next horizontal
cell of the vehicle. To model the uncertainty in θi, we employ a von
Mises distribution, an analogue of a Gaussian distribution on the
circle. The von Mises distribution is defined by

fVM(θi|φi, κ) =
exp
`
κ cos(θi − φi)

´
2πI0(κ)

, (13)

where φi is the mean, κ is a concentration parameter, and I0(κ)
is the modified Bessel function of the first kind of order 0. We set
φi to the angle given by the wind field model at position ri, φi =
∠w(ri, t), and κ to a constant chosen by the user. Note that κ could
also be chosen to vary by position if desired.The wind magnitude wi
uncertainty is modeled as Gaussian, with distribution

fN(wi|µi, σ2
i ) =

1p
2πσ2

i

exp

„
− (wi − µi)2

2σ2
i

«
. (14)

Here, we set the mean to the value given by the wind field model,
µi = ‖w(ri, t)‖, and the standard deviation set as proportional to
the magnitude, σi = ρ ‖w(ri, t)‖. The value of ρ is chosen by the
user.

Next we define the transition probabilities Pa(si, s
′
i) that govern

what state s′i is entered after executing each action a from each state
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si. Note that all uncertainty is limited to the horizontal direction;
the vehicle will transition to a selected altitude with probability 1,
provided that the action is allowable (i.e., that the altitude is reachable
based on vertical actuation limits). Thus, for the discussion below,
only the projections onto the horizontal plane are relevant.

Let us first address the situation where there is no horizontal
vehicle actuation. In this case, the wind direction wholly determines
the next state’s horizontal position, and the action space consists
only of selection of the next altitude from those possible under the
constraints of vrise and vsink. So, for each horizontal slice within the
allowable altitudes dictated by a, the probability of the wind forcing
the Montgolfière from state si to a horizontally adjacent state sj is

Pa(si, sj) =

Z θij+
π
4

θij

fVM(θ|φi, κ) dθ, (15)

where θij is the smaller bordering angle of the one-eighth circular
sector pointing from si to sj . Note that this integration must be
accomplished numerically, as no closed-form solution exists.

Next, let us address the use of horizontal vehicle actuation. As
before, horizontal actuation is accounted for via an additive velocity
on top of the wind velocity. In the stochastic case, we still treat the
actuation as known, but the direction and magnitude of the wind are
now uncertain. We are interested in the transition governed by the
resultant velocity, ṽi,a = w̃(ri, t) + ua.

A Monte Carlo method is used to determine the probabilities P
of and expected rewards R from the resultant vector for each action,
as follows. First, a set Θ0 of N sample points are drawn from the
von Mises distribution fVM(θ|0, κ) and a set W0 of N samples from
the standard normal distribution. (This step is required only once,
whereas the following steps must be done by iterating for each state
si.) Second, we adjust these samples for the state si. The wind
direction samples are rotated by φi, Θi = Θ0 + φi, and the wind
magnitude samples are adjusted by Wi = σiW0 + µi (pardoning
the abuse of notation—each sample in Θ0 and W0 is adjusted
individually). Third, we calculate the resultant velocity samples by
converting the random wind samples to Cartesian coordinates and
adding the horizontal actuation:

Vi,a = Wi

»
cos Θi

sin Θi

–
+ ua, (16)

where again the operations involving Wi and Θi are performed
element-wise.

Once we have the resultant samples Vi,a = {vni,a}Nn=1, we can
calculate the transition probabilities P , which are simply made by
counting the samples in each circular sector corresponding to sj :

Pa(si, sj) =
1

N
|Vij,a|, (17)

where | · | represents cardinality and:

Vij,a =
n

vni,a | ∠vni,a ∈ [θij , θij +
π

4
)
o
. (18)

B. Action Space and Rewards

Minimum travel time is the goal of our MDP solution and thus
travel time is still appropriate to use as a transition cost. Note that
we do not know the resultant velocity exactly but that we seek the
expected reward for the MDP. We estimate the expected value of the
velocity magnitude as the population mean of the above Monte Carlo
samples:

〈vi,a〉 =
1

N

NX
n=1

‚‚vni,a‚‚. (19)

The expected immediate reward for the transition from si to sj under
action a is then:

Ra(si, sj) = − dij
〈vi,a〉

, (20)

where dij =
p

(xj − xi)2 + (yj − yi)2 is the horizontal distance
from ri to rj . Note that the reward is negative to enforce elapsed
time as a “cost”. Note also that the travel time is identical for all
actions a that have the same horizontal actuation (i.e., travel time is
not dependent on altitude choice).

C. Solving for Minimum Time-to-Goal

To complete the problem setup, we define a goal location for the
Montgolfière and create a sink state at this location. All transitions
leaving the sink state sg have zero probability—it is the only state
where the the vehicle can remain stationary (or, more precisely, once
in sg, the vehicle returns to sg with probability 1 and zero reward).
Thus, the cumulative reward will decrease with every transition until
the vehicle reaches the goal location sg.

Given this setup, the MDP solution will determine, for each given
current state si, what is the optimal immediate action a ∈ Ai so
that the expected cumulative time-to-goal is minimal. This collection
of actions is referred to as the optimal policy π∗. Note that this
differs conceptually from the deterministic graph search method,
which instead defines the initial state and determines the cost to reach
each other cell from this location.

An undiscounted (γ = 0) MDP solution method is appropriate
because we are interested in the cumulative time elapsed from start
to goal. Then, the total expected reward of a state si (value of si
under policy π∗) V ∗(si) indicates the expected value of the travel
time from a given state si to the goal state. The value V ∗(si) thus
provides the information needed in our “reachability” plots, which,
for the MDP case, now represent the expected time-to-goal (rather
than time-from-start as in the deterministic case).

D. Results

We applied the above approach for planning paths in uncertain
wind fields to simulations of a Montgolfière balloon in the atmosphere
of Titan. Nominal wind field values were again taken from the
TitanWRF model [5]. The MDP was solved via value iteration until
the maximum change in value over all states changes less than ε = 1
[Earth day] between iterations.

Figure 9 displays the expected time-to-goal (AKA time-to-go) of
the vehicle from anywhere on the Titan globe. The expected time-
to-goal is equivalent to the “value” V (si) of the state. For each plot,
only one horizontal slice (at z = 1000m) is shown. Note that these
figures are different from “reachability” plots in previous section,
which plot the time to reach the cell from a given start position;
here, we are given the goal location and show how long we expect
to take to reach it. Also, the time is an expected value, since the actual
time is uncertain. The path is randomly generated from a manually
selected starting location (20◦ N, 0◦ E), following an optimal policy,
and moving according to the state transition probabilities P . The
size of the circle along the path increases with time to show the
progress of the vehicle, while the color inside the circle indicates
vehicle altitude. Note that since the transitions are uncertain, visiting
the same location multiple times may result in different transitions,
as happens in the unactuated case.

It is clear that the use of actuation greatly aids the vehicle in
reaching the goal. (Note that the color bars are plotted on different
scales, so the colors cannot be compared directly.) Especially in the
case of the goal nearest the southern pole, the goal cannot be reached
from several locations without the aid of actuation. A more detailed
description of algorithms is discussed in [25].
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(a) 0.0 m/s horizontal actuation, sam-
ple path 1

(b) 0.0 m/s horizontal actuation, sam-
ple path 2

(c) 1.0 m/s horizontal actuation, sam-
ple path 1

(d) 1.0 m/s horizontal actuation, sam-
ple path 2

Fig. 9. Possible paths for goal location 68◦ N, 50◦ E and start location 20◦

N, 0◦ E, with and without horizontal actuation. The paths shown represent
random samples of the transition probabilities generated along the optimal
policy. Note that in the figure without actuation, the vehicle revisits some
cells multiple times.

VII. LOITERING

The methods described in the preceding chapters enable path
planning for a Montgolfière to reach the location of a desired science
target, either through vertical actuation alone or combined with
limited horizontal actuation. Once arrived at the target, however, the
limitation or lack of horizontal actuation presents a new problem:
• Given the vehicle has reached its target location cell, how long

can it remain in that cell to perform science observations?
One obvious solution – dropping an anchor – may not be practical
for the Titan mission from altitude and mass considerations. Instead,
we consider again using the wind field predictions. If the altitude is
not constrained, then we can position the Montgolfière at the altitude
of smallest horizontal wind magnitude to maximize the time spent
within the target cell. Eventually, the Montgolfière may drift out of
the science target cell. If the mission requires further observations of
the target cell, it would be useful to determine if the Montgolfière
could repeatedly return to the same cell given the predicted wind
fields; i.e., find the shortest time or distance cycle path that includes
the science target cell. Our reachability graphs can be used both to
calculate hover times and to plan the shortest possible path to return
to the target.

A. Minimum Wind Speeds and Maximum Hover Times

Wind speed extrema were determined by linearly interpolating the
horizontal wind velocity components to 50 m intervals in altitude
for each latitude and longitude grid point, computing the vector
magnitude, and sorting by magnitude within each vertical column of
cells. Figure 10 illustrates predicted minimum speeds for a stationary
Titan wind field (at time Ls = 0), at the model’s highest spatial
resolution (5 deg×5 deg×500 m). The minimum horizontal speeds
range from near zero to over 2 m/s. At this time of year, minimum
wind speeds in the southern hemisphere are generally lower than
in the northern hemisphere, and range up to around 1 m/s. For
comparison purposes, the maximum wind speeds for the same point
in time, shown in Figure 11, range to over 5 m/s.

To help illustrate the benefit of adding horizontal actuation, Fig-
ure 12 shows a coarser contoured version of the minimum speed
data in Figure 10 , binned to 0.25 m/s intervals. In Table I, the
area of each colored contour was summed cumulatively and divided
by the total area, to estimate the fraction of cells at each actuation

Fig. 10. Titan wind field minimum magnitudes at each latitude and longitude,
over altitude up to 10 km. Grid resolution of 5 deg × 5 deg × 500 m, with
static wind field at time Ls = 0 [deg].

Fig. 11. Titan wind field maximum magnitudes at each latitude and longitude,
over altitude up to 10 km. Grid resolution of 5 deg × 5 deg × 500 m, with
static wind field at time Ls = 0 [deg].

level in which the vehicle can hover indefinitely. For example, with
onboard actuation capability of 0.5 m/s, the vehicle would be able
to hover indefinitely over greater than half of the total number of
surface locations.

Without horizontal actuation, the smallest horizontal wind speed
is usually found at the altitude corresponding to the longest duration
adjacency arc in A(i, j). However, A(i, j) also depends on cell
shape and size, so it is a better indicator than wind speed of the actual
loitering time within a given cell. Using max A(i, j) at each latitude
and longitude, the predicted maximum hover times for the stationary
wind field are shown in Figure 13, for the case of no horizontal
actuation. Calculating the maximum hover time is straightforward to
extend to the nonstationary or stochastic wind field models: substitute
the new search methods and weighted adjacency matrices as defined
in the preceding chapters.

Fig. 12. Titan wind field minimum magnitudes at each latitude and longitude,
over altitude up to 10 km, binned to 0.25 m/s intervals. Grid resolution of
5 deg× 5 deg× 500 m, with static wind field at time Ls = 0 [deg].
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TABLE I
FRACTION OF GRID LOCATIONS ALLOWING INDEFINITE HOVER.

Actuation level (m/s) 0 0.50 0.75 1.00 1.50 2.00
Indefinite hover fraction 0 0.623 0.760 0.867 0.963 0.997

Fig. 13. Titan wind field maximum hover times within each latitude and
longitude cell, for the case of no horizontal actuation. Grid resolution of
10 deg × 10 deg × 500 m, altitude up to 10 km, static wind field at time
Ls = 0 [deg].

B. Minimum Closed Cycle in a Stationary Wind Field

After the Montgolfière drifts out of a science target cell, we can use
our graph search tools to find the shortest time or distance cycle path
to return to the target cell. For the general case of locating cycles in a
directed graph, there are reported methods available. However, for our
case we know the initial science target cell and can take advantage
of our precomputed weighted adjacency matrix, which means that a
more straightforward approach is feasible. Given a desired science
target cell, si, and a weighted adjacency matrix A(i, j) for a wind
field grid, the minimum-time closed-cycle to return to cell si after
drifting out can be determined as follows:

1) Determine R(si), the set of all cells sj adjacent to si, using
the methods outlined in Section IV on Graph Construction.

2) For each reachable cell sj in R(si), run the shortest path
algorithm (in Section IV) from sj with si as the end goal.

If the science target requires us to be at a particular altitude, then
the altitude of si is fixed. In this case, we must perform a path search
from each of the m adjacent nodes of si, where m is the cardinality
of R(si), to si. For example, in the deterministic wind field without
horizontal actuation, there is only one possible horizontal direction
from si, but L possible adjacent altitudes, so m = L, and m path
searches must be run. If, instead, the science target can be observed
from any altitude, then we must also perform path searches for all of
the L possible starting altitudes. Due to the overlap of the adjacent
nodes, in the worst case we have to perform only 8L path searches. In
practice, the computation is more tractable because not all 8 directions
will be reachable from the science target location, and the set of
adjacent cells for a given starting altitude will often overlap with
adjacent cells of other starting altitudes.

We can increase the graph search efficiency by reducing the graph
size with distance or time constraints. Assuming the Montgolfière
must return to si within a desired time Td, or travel no farther from
si than distance D, then we can first determine the reachability map
from si as the starting point, and remove all cells from the graph
that are farther than Td in time, or D in distance, before searching
the remaining graph for the shortest possible cycles.

VIII. CONCLUSION

In this paper we presented a new path planning approach for
local and global path planning of propelled and un-propelled hot-air

(Montgolfière-type) balloons operating in Titan’s atmosphere. This
planning approach enables a Montgolfière to exploit variations in
the wind field at different altitudes to achieve a desired horizontal
motion. The approach was extended to the time-varying wind fields,
which significantly increased the computational complexity. A new
decomposition method has been developed that requires less memory
and computation time compared to the original approach. To account
for the uncertainties in the wind fields, a stochastic formulation was
also presented. It was shown that by using a spatial and temporal
discretization combined with existing graph search techniques we
can determine the altitude profiles that reach a target in minimum
time, can determine the set of all reachable targets from a given
start location, and can provide a reachability analysis for the entire
moon. This new approach was applied to different scenarios and the
performance of a free floater, an unpropelled balloon with altitude
control, and a propelled balloon was examined. It was shown that
given a small amount of horizontal actuation, the balloon will be
capable of reaching more targets on Titan given a limited mission
duration, and of reaching all targets more quickly than a passive
balloon. Moreover, in the cases where there is a need to repeatedly
visit (or ‘loiter’ over) a science target, it was shown that the
cycle times dramatically decrease when an actuated balloon is used.
Therefore, use of actuation clearly helps the vehicle to reach its target
faster and to remain there if desired.

Primarily, the focus of this study has been on trade studies and
quantitative assessments of balloon guidance performance on Titan
based on approximated dynamics of the balloon. These guidance
trajectories are as valid as the wind field models, and using a finer
grid for the wind fields one can generate finer guidance trajectories.
It is important to note that the study did not focus on the control
problem for the balloon to track these trajectories. A future work can
be dedicated on studying the full dynamics of the system and control
strategies that could drive the balloon to desired guidance trajectories
in presence of all kinds of disturbances.

The proposed path planning method provides a quantitative guid-
ance performance, science return assessment, and sensitivity of
mission performance to key parameters, which will have significant
impact on design choices and trade studies for cost effective future
balloon missions. The reachability analysis is critical in performing
trade studies to determine the right aerial system to use, and where
and when such a system should be deployed for maximum science
return. This path planning tool is a general purpose guidance algo-
rithm that can be applied to exploration balloons on any moon/planet
with atmosphere, including Titan, Mars, Venus and the gas giants,
provided that wind field models are available.
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