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Abstract— A numerically-efficient, convex formulation of
PDG (Powered-Descent Guidance) for Mars pinpoint and pre-
cision landing has been enhanced to include thrust pointing
constraints. The original algorithm was designed to enforce
both control and state constraints, including maximum and
minimum thrust bounds, maximum speed limits and descent
within a glideslope cone (surface impact avoidance). The thrust
bounds are non-convex, so the original formulation developed
a lossless convexification of these constraints. Likewise, thrust
pointing constraints are non-convex. In this paper we present
a relaxation for the thrust pointing constraint such that the
enhanced PDG algorithm generates a lossless convexification for
both the thrust bound and thrust pointing constraints. Pointing
constraints are needed for onboard terrain-relative sensors that
have specific field-of-view requirements during landing.

I. INTRODUCTION

A typical Mars EDL (Entry, Descent and Landing) consists
of a hypersonic entry phase, a parachute phase and a landing
phase. The landing phase typically implements either an
air-bag system or a powered-descent system (throttleable
rockets that descend the lander). Landing errors relative to
an intended target are accumulated primarily between the
atmospheric entry through parachute phases, with the daily
variations in the Mars atmosphere being the dominant cause.
The current state of practice in EDL has a landing capability
of 10 km (3σ) from the desired landing target [1].

Landing systems using powered-descent thrusters offer the
potential for greatly reducing the 10-km landing error and
enabling precision and pinpoint landing. Powered-descent
thrust profiles are generated with onboard guidance algo-
rithms. Current guidance methods ensure a safe landing that
avoids impact with the descending parachute/backshell after
lander separation, but there is no attempt to minimize landing
error. To reduce landing error, many candidate guidance
algorithms have been developed [1]–[9]. These algorithms
vector available thrust to maneuver the descending lander
closer to the original target, thus achieving touchdown closer
to a desired science location (or existing surface asset) and
reducing the risk of any lengthy rover traverse.

Powered-descent guidance algorithms that minimize land-
ing error must consider spacecraft performance constraints
such as the governing physics, available fuel, thrust limits,
and position and speed constraints. Additionally, the short
duration of Mars powered descent requires computationally-
efficient algorithms. The descent thrusters typically cannot
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be throttled off after ignition, so guidance algorithms must
constraint thrust profiles within a minimum and maximum
bound. Further, onboard sensors for terrain-relative naviga-
tion generally require specific viewing orientations that con-
straint spacecraft attitude, and thus, thrust-pointing direction.

Many heritage PDG algorithms solve a close-form, sim-
plified guidance problem by assuming polynomial profiles
and ignoring some constraints [5], [10]. These approaches
provide guidance solutions that have a limited envelop of
initial states from which a spacecraft can maneuver toward
the desired target without violating the physical state and
control constraints [11]. Other methods enforce the appro-
priate constraints but with nonlinear optimization [6], [7],
which has no guarantee on convergence time or that the most
fuel optimal solution will be found.

The development of a convex PDG algorithm for pin-
point landing explicitly enforces state and control constraints
and provides guarantees of global optimality and numerical
efficiency [1]. A primary theoretical contribution from this
work was the lossless convexification of the thrust-magnitude
lower bound. Extensions of the algorithm for precision land-
ing [2] considered landing situations where fuel availability
limited the ability to remove all landing error. This paper
revisits this convex formuation and incorporates an extension
and theoretical proof that enforce thrust-pointing constraints.
This is a significant theoretical contribution, as the non-
convex thrust-pointing constraints, like the thrust-magnitude
bounds, are convexified through a further lossless relaxation.
The algorithm and proof also incorporate planetary rotation.

The enhanced convex PDG algorithm is formulated as
a SoCP (Second order Cone Program) that can be solved
with numerically-efficient interior-point solvers that have
deterministic stopping criteria [12]. If a feasible solution
exists, then interior-point methods will find the global op-
timal solution to an SoCP [13]. The explicit enforcement
of the lower bound on thrust magnitude and the numerical
efficiency and accuracy make the convex PDG algorithm a
strong candidate for flight implementation [9]. Additionally,
compared to heritage algorithms, the convex PDG algorithm
provides a significant increase in the initial states from which
pinpoint landing can be achieved [11].

II. PLANETARY SOFT LANDING PROBLEM WITH
POINTING CONSTRAINTS

The planetary pinpoint landing problem searches for the
thrust profile Tc and accompanying translational state tra-
jectory (r, ṙ) that minimize fuel consumption and guide
a lander from the initial position r0 and velocity ṙ0 to a
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state of rest at the desired surface location. The problem
considers planets with a constant rotation rate, a uniform
gravity field, and negligible aerodynamic forces during the
powered-descent phase of landing. When the target point is
unreachable from a given initial state, a precision landing
problem (or minimum landing error problem) is considered
instead, with the objective to first find the closest reachable
surface location to the target and second to obtain the mini-
mum fuel state trajectory to that closest point. We formulate a
prioritized optimization approach that handles both problems
under a unified framework, which is then referred to as the
planetary soft landing problem.

The dynamics of the system are described by

ẋ(t) = A(ω)x(t) +B

(
g +

Tc(t)

m(t)

)
,

ṁ(t) = −α‖Tc(t)‖,
(1)

where x(t) = (r(t), ṙ(t)) : R+→ R6, m(t) : R+→ R+ is
lander mass, g∈R3 is constant gravity,

A(ω) =

[
0 I

−S(ω)2 −2S(ω)

]
, B =

[
0
I

]
, (2)

α>0 is constant fuel consumption (mass depletion) rate, ω=
(ω1, ω2, ω3)T ∈R3 is constant planetary angular velocity, and
S(ω) is a matrix representation of cross product ω×(·).

The state constraints include a glide slope constraint and
a maximum speed constraint. The glide slope constraint
ensures that the lander position is a safe distance from the
surface until the target is reached (Figure 1). The speed con-
straint is needed to avoid supersonic velocities (for planets
with atmospheres) where the control thrusters can become
unreliable. Both of these constraints are convex, and a convex
set X of feasible positions and velocities is defined as

X =
{

(r, ṙ) ∈ R6 : ‖ṙ‖ ≤ Vmax,

‖E (r − r(tf ))‖ − cT (r − r(tf )) ≤ 0
}
, (3)

where Vmax is the maximum allowable speed, and c specifies
the glideslope cone with angle γgs and vertex r(tf ):

c ,
e1

tan γgs
, γgs ∈ (0, π/2). (4)

For completeness, we give the standard definition of the
interior of X:

intX,{x∈X :∃ ε>0 such that y∈X if ‖x−y‖<ε}. (5)

The boundary of X is given by ∂X , {x ∈ X : x /∈ intX}.
Three control constraints are imposed in powered-descent

guidance (Figure 2). Given the maneuver time (time-of-
flight) tf , for all t ∈ [0, tf ], the control constraints include
the following:
• Convex upper bound on thrust, ‖Tc(t)‖ ≤ ρ2.
• Non-convex lower bound on thrust, ‖Tc(t)‖ ≥ ρ1 > 0.
• Thrust pointing constraint n̂TTc(t)/‖Tc(t)‖ ≥ cos θ

where ‖n̂‖ = 1 is a direction vector and 0 ≤ θ ≤ π
is the maximum allowable angle from n̂; convex when
θ ≤ π/2 and non-convex when θ > π/2.
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Fig. 1. Glideslope constraint in precision-landing PDG problem. The
glideslope constraint requires the spacecraft to remain in a cone defined
by the minimum slope angle γgs.

Pointing
Envelope

Intersection

Fig. 2. Planar representation of original thrust bounds (left) and intersection
of thrust bounds and thrust pointing limits (right)

Given the constraints, the dynamics, and a target location
on the surface (0, q)T where q ∈ R2 are the surface
landing coordinates, the planetary soft landing problem is
formulated as the following prioritized optimization problem:

Problem 1: Non-convex minimum landing error problem

min
tf ,Tc

‖Er(tf )− q‖ (6)

subject to the following, ∀t ∈ [0, tf ]: the dynamics in (1),

0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2, n̂
TTc(t) ≥ ‖Tc(t)‖ cos θ, (7)

m(0) = m0, m(tf ) ≥ m0 −mf > 0, (8)
x(t) ∈ X, (9)

r(0) = r0, ṙ(0) = ṙ0, e
T
1 r(tf ) = 0, ṙ(tf ) = 0 (10)

Problem 2: Non-convex minimum fuel problem

max
tf ,Tc

m(tf )−m(0) = min
tf ,Tc(·)

∫ tf

0

α‖Tc(t)‖ dt (11)

subject to the following, ∀t ∈ [0, tf ]: the dynamics in (1),

0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2, n̂
TTc(t) ≥ ‖Tc(t)‖ cos θ,

x(t) ∈ X, m(0) = m0, m(tf ) ≥ m0 −mf > 0,

r(0) = r0, ṙ(0) = ṙ0, e
T
1 r(tf ) = 0, ṙ(tf ) = 0,

‖Er(tf )− q‖ ≤ ‖d∗P1 − q‖ (12)

where d∗P1 = Er∗P1(tf ) ∈ R2 is obtained by solving Problem
1; d∗P1 is the closest reachable point on the surface to the
target location q. Parameter mf is the available fuel, m0 is
the wet mass at powered-descent ignition, and

E =

[
eT2
eT3

]
=

[
0 1 0
0 0 1

]
.
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Equation (8) defines the initial lander mass and ensures
that no more fuel than available is used. Equation (10) defines
the initial and final position and velocity of the lander; the
final state at time tf constrains the lander to be at rest at the
landing target. Note, the time-of-flight tf is an optimization
variable and not fixed a priori.

A key challenge in solving Problems 1 and 2 are the
non-convex control constraints. The lower thrust-magnitude
bound ρ1 in (7) makes the allowable thrust a non-convex
set (See Figure 2, left). When ρ1 = 0 the thrust bound
constraint is convex, but the thrust pointing constraint in
(7) can still be non-convex when θ > π/2 (See Figure 2,
right). These non-convex control constraints prevent direct
use of convex optimization techniques to solve this problem.
Further, the ṁ(t) mass-consumption dynamics in (1) are
a nonlinear differential equation, which when discretized
become nonlinear equality constraints (also non-convex).

The key theoretical innovations in Ref. [1] were a loss-
less convexification of Problem 2 (without thrust pointing
constraints) that included a relaxation fo the non-convex
thrust bound and a method to handle the mass consumption
dynamics. The optimal solution of the relaxed problem was
proven to also be the optimal solution of Problem 2; however,
this does not hold for thrust pointing constraints, even when
θ ∈ [0, π/2). The theoretical contribution of this paper is the
extension of the lossless convexification for Problem 2 to
holds for thrust pointing constraints. Additionally, planetary
rotation is included, which was not a part of Ref. [1].

The enhanced relaxed problem uses a slack variable Γ(t)
to relax all of the control constraints, which become
• Convex upper bound on thrust, ‖Tc(t)‖ ≤ Γ(t).
• Convex thrust pointing constraint, n̂TTc(t)≥ Γ(t)cos θ.
• Convex bounds on scalar Γ, ρ1 ≤ Γ(t) ≤ ρ2.

The relaxed pointing constraint forms a half-space of valid
thrust values in Tc-Γ space. The valid thrust values are in
the direction of the outward facing normal to the half space:

half-space normal ,

(
n̂

− cos θ

)
, (13)

which comes from the convex pointing-constraint inequal-
ity above. Figure 3 illustrates the half-space constraint for
several pointing angles (θ = {180◦, 90◦, 0◦}) and a planar
(i.e., two-dimensional) thrust representation with pointing
vector n̂ along the Tc(1) axis. The half-space orientation is
significant as its intersection with the convex thrust-bound set
provides the set of valid thrust profiles for the enhanced PDG
algorithm. Reference [1] shows the convexified thrust bounds
form a sliced 45◦ cone (Figure 4, left). Since the intersection
of convex sets is also convex, the intersection of the relaxed
thrust bounds and the relaxed pointing-constraint half-space
forms a convex set. Figure 4 (right) shows intersection for a
pointing-constraint half-space with θ > 90◦.

Since the relaxed thrust bounds form a 45◦ cut cone, a
pointing constraint of θ = 180◦ (effectively no pointing
constraint) will intersect the cone only on the line at the
bottom 45◦ edge. Thus, the entire cut cone contains valid
thrust values for the relaxed problem. Recall, the pointing

Fig. 3. The relaxed pointing constraint is convex. The set is a half-space
in the direction on the normal vector to the planes shown for θ = 180◦

(left), θ = 90◦ (center), and θ = 0◦ (right). Planar thrust is used here.
Convex
Intersection

Pointing
Half-Space

Fig. 4. Planar representation of thrust-bound relaxation (left) and its
intersection with relaxed pointing-constraint half-space (right).

half-space is above the plane oriented at −45◦ to the Γ
axis (Figure 3, left). In contrast, when θ = 0◦ the pointing-
constraint half-space is above the plane oriented at +45◦ to
the Γ axis and intersects the relaxed thrust-bound cone on
the upper 45◦ edge. Only this line has valid thrust values,
which only apply to the extremely unlikely scenario of a
vertical-only thrust for a descent directly above the target.

The relaxed thrust pointing constraints enhance the
original relaxed PDG problem, which is given by

Problem 3: Relaxed minimum-fuel guidance problem

min
tf ,Tc(·),Γ(·)

∫ tf

0

Γ(t) dt (14)

subject to the following: for all t ∈ [0, tf ],

ẋ(t) = A(ω̂)x(t) +B

(
g +

Tc(t)

m(t)

)
,

ṁ(t) = −αΓ(t), (15)
‖Tc(t)‖ ≤ Γ(t), 0 < ρ1 ≤ Γ(t) ≤ ρ2, (16)

n̂TTc(t) ≥ Γ(t) cos θ, (17)
m(0) = m0, m(tf ) ≥ m0 −mf > 0,

r(0) = r0, ṙ(0) = ṙ0, e
T
1 r(tf ) = 0, ṙ(tf ) = 0

x(t) ∈ X, ‖Er(tf )− q‖ ≤ ‖d∗P1 − q‖

where

ω̂ :=


ω if S(ω)n̂ 6=0, NTS(ω)2n̂ 6=0

ω + εn̂⊥ if S(ω)n̂ = 0

ω + εn̂ if S(ω)n̂ 6=0,NTS(ω)2n̂=0

(18)

with n̂⊥ a unit vector such that n̂T n̂⊥ = 0, N ∈ R3×2

has columns spanning the null space of n̂T , and ε > 0
is a small real number.
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Note that the non-convex thrust constraints in (7) for
Problems 2 and 1 have been replaced with convex constraints
(16) and (17) in Problem 3. Also we modified the dynamics
slightly, ε > 0 an be chosen arbitrarily close to zero, when
S(ω)n̂ = 0. This is done purely for theoretical reasons that
will enable us to prove Theorem 1 below. In practice we
have not see any case where this modification was needed.
In Ref. [1] we showed that constraint relaxation (16) on the
thrust bound allows the discrete-time form of Problem 3
to be posed as a convex optimization problem; the same
holds true with the addition of the convex thrust-pointing
constraint (17). Additionally note that the relaxation of
the thrust-pointing constraint can also be applied to the
precision-landing version of the convex algorithm in [2].

Definition 1: Fe denotes the set of feasible solutions of
Problem 1 and Ff for Problem 2, that is, {tf ,Tc,x,m} ∈
Fe if it satisfies all the state (9), control (7), and fuel (8)
constraints, dynamics (1), and boundary constraints (10) of
the problem, and similarly for Ff . F∗e ⊆ Fe and F∗f ⊆ Ff

are the corresponding set of optimal solutions. Frf denotes
the set of feasible solutions {tf ,Tc,Γ,x,m} for Problem 3,
with F∗rf ⊆ Ff being the set of optimal solutions.

Now, the following theorem gives a generalization of
the earlier results in [1], [2] to also handle thrust pointing
constraints.

Theorem 1: Consider Problem 3 with ω̂ as defined in
(18). Let {t∗f ,T ∗c ,Γ∗,x∗,m∗} ∈ F∗rf such that the corre-
sponding state trajectory x∗(t) ∈ intX ∀t ∈ [0, t∗f ). Then,
{t∗f ,T ∗c ,x∗,m∗} ∈ F∗f .

The proof of Theorem 1 is contained in the Appendix. The
above theorem states that the optimal solution of Problem 2
can be obtained by solving the relaxed Problem 3 for ω̂.
Clearly for ω = ω̂ we find the exact optimal solution to the
problem of interest. When ω̂ 6= ω, we find optimal solutions
of a problem that can be made arbitrarily close to the problem
of interest by simply choosing ε > 0 close enough to zero.

III. PINPOINT LANDING SIMULATIONS WITH THRUST
POINTING CONSTRAINTS

The incorporation of the pointing constraints into the PDG
algorithm ensures that the translational guidance does not
require the spacecraft attitude to be oriented outside of a
desired pointing cone. The enforcement of additional guid-
ance constraints usually results in a trade off in some aspect
of performance. For instance, as the pointing constraints are
tightened, the required fuel and flight time generally increase
due to the restricted pointing capability. This result will be
seen in the following comparison simulations, which make
use of an example spacecraft with the following properties
(at powered-descent ignition):

m0 = 2000 kg, mf = 300 kg, (19)
ρ1 = 0.2Tmax, ρ2 = 0.8Tmax, (20)

Tmax = 24000 N, α = 5× 10−4 s/m, (21)

where Tmax is the maximum-capable translational thrust
magnitude. Note, the thrust limits coincide with a minimum
and maximum throttle of 20% and 80%, respectively.

The initial state of the spacecraft, expressed in a surface-
fixed guidance frame, is

r0 =

2400
450
−330

m, ṙ0 =

−10
−40
10

m/s, (22)

and the target landing site is at q = 0 m, the origin of the
guidance frame. The Mars parameters, also expressed in the
guidance frame, are as follows:

g =

−3.71
0
0

m/s2 and ω =

2.53×10−5

0
6.62×10−5

 rad/s. (23)

Note, since S(ω)n̂ 6= 0, ω̂ = ω in Problem 3.
Three simulations were run for varying pointing-constraint

limits: i) unconstrained; ii) 90◦ constraint; iii) 45◦ constraint.
The results of these simulations are overlaid in Figures 5–7.
Figure 5 overlays the thrust pointing profiles for the duration
of each guidance-profile flight time. As seen in the plot,
the pointing angle is relative to local vertical, which aligns
the pointing cone n̂ vector along the coordinate-frame X
axis. The pointing profiles clearly indicate that the relaxed
algorithm enforces the prescribed pointing constraints.
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Fig. 5. Attitude constraints are enforced with the enhanced Powered-
Descent Guidance algorithm

Figure 6 provides the throttle profiles that coincide with
the pointing profiles of Figure 5. As seen in the throttle
plot, all thrust bounds are obeyed during the simulations,
which indicates that the constraint relaxations in Problem 3
on both thrust magnitude and pointing remains valid for the
original pinpoint-landing problem (Problem 2). This figure
provides some further insight on the trade off in performance
that generally occurs as constraints are tightened. As the
the pointing limit tightens, the required flight time and fuel
increases, as summarized in Table I.

TABLE I
TIGHTENING POINTING CONSTRAINTS AFFECTS FUEL AND FLIGHT TIME

Attitude Required Fuel (kg) Flight Time (sec)
Unconstrained 200.1 44.63
90◦ Constraint 201.8 46.96
45◦ Constraint 222.3 57.29
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Fig. 6. Throttle constraints are obeyed for all attitude constraints

The impact of tighter pointing constraints is also visible
in the ground track of the guidance profile along the Martian
surface. Figure 7 overlays the surface trajectories coinciding
with the three thrust profiles from the prior figures. The
45◦ constraint overshoots the target along the Y axis in
order to satisfy the pointing constraint. Interestingly, the 90◦

constraint profile takes a more direct route to the target. This
is a result of the optimization within Problem 3 that finds
the profiles that minimize the fuel usage for pinpoint landing
subject to the enforced constraints.
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Fig. 7. Trajectories change with different attitude constraints

IV. CONCLUSIONS

A key development in numerically-efficient, convex Mars
powered-descent guidance was presented within this paper.
A theoretical extension of the relaxation that allows for
convexification of minimum thrust bounds also provides for
a lossless convexification of thrust pointing constraints, a
significant contribution. The resultant, enhanced algorithm
retains convexity and is valid for the original powered-
descent guidance problem that has both upper and lower
bounds on thrust as well as pointing constraints. Such
pointing constraints can result from onboard sensor systems
requiring specific fields of view to obtain terrain-relative
state information, which is critical for enabling pinpoint and
precision landing capability. In addition to the pointing con-
straints, the enhanced powered-descent guidance algorithm

accounts for planetary rotation in the dynamics and maintains
the capability to enforce additional constraints on the state,
including speed limits, glide-slope constraints, and surface
constraints to avoid subsurface flight.

APPENDIX: PROOF OF THEOREM 1

The following two Lemmas are instrumental in the proof
of Theorem 1. For brevity, they are stated without proof.

Lemma 1: Consider the following linear time invariant
system

λ̇(t) = −A(ω̂)Tλ(t), y(t) = BTλ(t), (24)

where λ(t) ∈ R6 and y(t) ∈ R3, and A(ω̂) ad B are given
by (2). Then the following conditions hold true; for any finite
interval [0, tf ]:
(i) y is an analytic function, and y(t) = 0 on either [0, tf ]

or at countable number of instances.
(ii) There is a countable number of instances in [0, tf ] such

that y(t) = α(t)n̂ for some α(t) > 0.
Lemma 2: An optimal solution of the following optimiza-

tion problem is also an extreme point of the feasible set of
solutions U(Γ):

max
Tc

yTTc subject to Tc ∈ U(Γ)

where U(Γ) := {Tc : ‖Tc‖ ≤ Γ, n̂TTc ≥ cos θΓ}, and
y 6= 0 and y 6= −αn̂ for any α > 0. Consequently an
optimal solution T ∗c satisfies that ‖T ∗c ‖ = Γ.

Proof: [for Theorem 1] Let q̃ := Er∗(t∗f ). Then, we
can consider {t∗f ,T ∗c ,Γ∗,x∗,m∗} as an optimal solution of
Problem 3 where the constraint ‖Er(tf )− q‖ ≤ ‖d∗P1 − q‖
is replaced by Er(tf ) = q̃. Without loss of any generality,
this version of Problem 3 will be used in this proof.

Since x∗(t) ∈ intX and m(t) > m0 − mf for all
t ∈ [0, tf ), the Maximum Principle of optimal control (See
Section V.3 of [14] or Chapter 1 of [15]), there exists a
constant β ≤ 0 and absolutely continuous function λ :
R+ → R6 and η : R+ → R, the co-state vectors, such
that the following conditions hold:
(i) Co-state conditions: ∀t ∈ [0, t∗f ],

(β,λ(t), η(t)) 6= 0 (25)

λ̇(t) = −A(ω̂)Tλ(t) (26)

η̇(t) =
λ(t)TBTc(t)

m(t)2
(27)

(ii) Pointwise Maximum Principle:

H(φ(t))=M(x∗(t),m∗(t),λ(t), η(t)) a.e. t∈ [0, t∗f ] (28)

where φ(t) = (t,x∗(t),m∗(t),T ∗c (t),Γ∗(t),λ(t), η(t)), H
is the Hamiltonian defined by

H(φ) := βΓ +λT (A(ω̂)x+B(g + Tc/m))−αΓη (29)

and, by letting V := {(Tc,Γ) ∈ R4 : ‖Tc‖ ≤ Γ, ρ1 ≤ Γ ≤
ρ2, n̂

TTc ≥ Γ cos θ},

M(x∗,m∗,λ, η) = max
(Tc,Γ)∈V

H(φ). (30)
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(iii) Transversality Conditions:

η(t∗f ) = 0 and H(φ(t∗f )) = 0. (31)

The necessary conditions of optimality (i) and (ii) directly
follow from the statement of the Maximum Principle. But
the transversality condition requires further explanation.
Transversality condition implies that (See Section V.3 of
[14]), for an optimal solution of the relaxed problem, the
vector ψ, defined by

ψ :=
(
H(φ(0)), H(φ(t∗f )), −λ(0),−η(0),λ(t∗f ), η(t∗f )

)
,

must be orthogonal to the manifold defined by the
set of feasible initial and final states described by
(0, tf ,x0,m0, (0, q̃,0),m(t∗f )), which is given by

span {e2, e14}.

The above follows from the fact that tf and m(tf ) are the
only free variables in the manifold of boundary conditions.
This then implies that eT2 ψ = 0 and eT14ψ = 0, that is,
H(φ(t∗f )) = 0 and η(t∗f ) = 0.

Next we show that

y(t) := BTλ(t) 6= 0 a.e. [0, t∗f ]. (32)

This will be done by contradiction. Suppose that the condi-
tion (32) does not hold. Since y is an output of the system
given by (26), y(t) = 0,∀t ∈ [0, t∗f ], or y(t) = 0 occurs at a
countable number of points in [0, t∗f ], which follows from the
first conclusion of Lemma 1. Suppose y(t) = 0 ∀t ∈ [0, t∗f ].
Note that the pair (A(ω), B) is controllable, which follows
from the fact that [B A(ω̂)B] is an invertible matrix. Hence
the pair (BT ,−A(ω̂)T ) is observable. Consequently, y(t) =
0 ∀t ∈ [0, t∗f ] implies that λ(t) = 0 ∀t ∈ [0, t∗f ]. Hence
η̇(t) = 0 ∀t ∈ [0, t∗f ]. Since η(t∗f ) = 0, this then implies
that η(t) = 0 ∀t ∈ [0, t∗f ]. These imply H(φ(t)) = βΓ(t).
Since H(φ(t∗f )) = 0 and Γ(t) ≥ ρ1 > 0, this suggests
that β = 0. Therefore (β,λ(t), η(t)) = 0 ∀ t ∈ [0, t∗f ],
which is a contradiction with necessary Condition (i) above.
Consequently there are countably many number of points in
[0, t∗f ] where y(t) = 0. Since a countable set has measure
zero, condition (32) holds.

Since any countable set has measure zero, the second
conclusion of Lemma 1 implies that the, for any function
α,

y(t) 6= −α(t)n̂ a.e. [0, t∗f ], α(t) > 0. (33)

Since condition (32) holds, a.e.[0, t∗f ] such that y(t) 6= 0,
and for a given Γ∗(t) an optimal control thrust T ∗c (t) must
satisfy

T ∗c (t) = arg max
(Tc,Γ∗(t))∈V

y(t)TTc = argmax
Tc∈U(Γ∗)

y(t)TTc, (34)

where U(Γ) := {Tc ∈ R3 : ‖Tc‖ ≤ Γ, n̂TTc ≥ Γ cos θ}.
Furthermore, since condition (33) holds, a.e.[0, t∗f ] such that
y(t) 6= 0 and y(t) 6= −α(t)n̂ for some α(t) > 0, the
maximizing solution of (34) must be on the boundary point
of U(Γ∗) that is also an extremal point of the set U(Γ∗),
which follows from Lemma 2. This lemma also implies that

all the extremal points of the set U(Γ) satisfy ‖Tc‖ = Γ,
and hence we must have ‖T ∗c (t)‖ = Γ∗(t), that is,

‖T ∗c (t)‖ = Γ∗(t) a.e. [0, t∗f ], (35)

which implies that an optimal solution of the relaxed problem
(3) satisfies

0 < ρ1 ≤ ‖T ∗c (t)‖ ≤ ρ2,

n̂TT ∗c (t) ≥ ‖T ∗c (t)‖ cos θ
a.e. [0, t∗f ].

Consequently (t∗f ,T
∗
c ,x

∗,m∗) ∈ Ff . Since for any
(tf ,Tc,x,m) ∈ Ff , (tf ,Tc, ‖Tc‖,x,m) ∈ Frf , an optimal
solution of Problem 3 has an optimal cost which is not
greater than the optimal cost of Problem 2. This implies that
(t∗f ,T

∗
c ,x

∗,m∗) ∈ F∗f , which completes the proof.
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[1] B. Açıkmeşe and S. R. Ploen, “Convex programming approach to pow-
ered descent guidance for mars landing,” AIAA Journal of Guidance,
Control and Dynamics, vol. 30, no. 5, pp. 1353–1366, 2007.
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