
Optimal Manipulator Path Planning with Obstacles
using Disjunctive Programming

Lars Blackmore and Brian Williams

Abstract— In this paper we present a novel, complete algo-
rithm for manipulator path planning with obstacles. Previous
approaches have used incomplete methods to make the problem
tractable. By posing the problem as a Disjunctive Program we
are able to use existing constrained optimization methods to
generate optimal trajectories. Furthermore, our method plans
entirely in the workspace of the manipulator, eliminating the
costly process of mapping the obstacles from the workspace
into the configuration space.

I. INTRODUCTION

Robotic manipulators need to be able to operate safely in
cluttered, 3-D environments. In order to achieve a manipu-
lation task, a manipulator needs to be able to plan a path
through its workspace to a goal location, while avoiding ob-
stacles. Previous approaches have made this highly complex
problem tractable by employing incomplete methods, such
as those using randomization [1][2] to find a feasible path
with high probability. While these have been effective in
practice, they are not guaranteed to find a path if one exists,
and any path that is found is not necessarily optimal with
regard to a given criterion. Furthermore, these methods plan
in the configuration space of the manipulator, and mapping
the obstacles from the workspace into the configuration space
is costly.

We present here a novel, complete algorithm for manip-
ulator path planning with obstacles that uses a disjunctive
programming [3] approach to make the problem tractable.
By using a combination of branch-and-bound [4] and con-
flict extraction [5] alongside efficient linear and quadratic
programming techniques, disjunctive programming is able
to search for the global optimum in a highly efficient
manner. Disjunctive programming has been successful for
path planning with non-articulated systems such as vehicles
[6][7][8]. We extend this work to manipulators. By using this
approach we are able to plan entirely in the 3-D workspace of
the manipulator, avoiding the need for mapping of obstacles.

In Section II we introduce Disjunctive Programming. In
Section III we extend this work to generate optimal trajec-
tories for manipulators moving in cluttered environments.

II. DISJUNCTIVE PROGRAMMING

A disjunctive program is defined as in (1). Here, x is a
vector of decision variables and f(x) is a function to be
minimized. The constraints are a conjunction of n clauses,
with each clause being a disjunction of mi inequalities:

Minimize f(x) subject to:
∧

i=1,...,n

(

∨

j=1,...,mi

Cij(x) ≤ 0
)

(1)

Joint 2
(Endpoint)

Joint 1

)1(
2x

)2(
2x

)3(
2x

)4(
2x

)5(
2x

)1(
1x

)2(
1x)3(

1x)4(
1x)5(

1x

Joint 0

)0(
2x

)0(
1x

)(
2

kx

)(
1

kx 2θ

1θ

Fig. 1. Path planning for a 2-DOF manipulator. We specify positions
for each of the joints, including the endpoint, at discrete time intervals t =

0, . . . , k. Given a desired position for each of the manipulator joints, solving
the inverse kinematics problem for the joint positions is straightforward.

If the cost function f(x) and the constraint inequalities
Cij(x) ≤ 0 are linear or quadratic in the decision vari-
ables, then the disjunctive program can be solved efficiently
using commercially available software [9] using a combi-
nation of branch-and-bound [4] and conflict extraction [5].
Furthermore, quadratic constraints and cost functions can
be approximated as piecewise linearities; hence a program
involving these can be approximated as a disjunctive linear
program [7].

III. PATH PLANNING FOR MANIPULATORS USING

DISJUNCTIVE PROGRAMMING

The key idea behind the new method is to plan a feasible,
optimal path for each of the manipulator joints in the
workspace of the robot. This path must be feasible in the
sense that:

1) The joints, and the links that join them, must not
collide with obstacles

2) The trajectory must be kinematically feasible
3) The trajectory must be dynamically feasible
4) The endpoint must move from the start to the goal

We use x
(t)
i to denote the position of joint i at time step t.

The new method generates a finite sequence of positions x
(1)
i

to x
(k)
i for each of the manipulator joints, as shown in Fig. 1.

We make the assumption that manipulator dynamics have a
limited effect. This applies to a great number of manipulation
and robot mobility tasks where the motion is relatively slow.
In these cases a lower-level controller is used to achieve a
given joint position and velocity. This allows the dynamics of
the system to be reduced to simple constraints that represent
the performance limits of the lower level controller.

In the following sections we show that the feasibility
requirements (1) through (4) can be expressed as constraints

4a

3a

5a

1a

2a 11 bT =xa

22 bT =xa

55 bT =xa
44 bT =xa

33 bT =xa

Fig. 2. Two-dimensional obstacle modeled as a convex polyhedron. The
vectors a1...aN are the unit outward normals to the N line segments that
define the obstacle.

on the position of the manipulator joints, and that further-
more, these constraints are at most quadratic in the position
variables. This allows the entire problem to be framed as a
Disjunctive Quadratic Program and solved efficiently using
commercially-available software.

A. Obstacle Avoidance using Disjunctive Linear Constraints

In this section we first review how obstacle avoidance for
a vehicle, modeled as a single point, can be expressed using
disjunctive linear constraints [6]. Next, we extend this to
apply to manipulators.

1) Obstacle Avoidance for Single Point: A polyhedral
obstacle, such as that shown in Fig. 2, is defined using N

straight-line segments. The vehicle collides with the obstacle
if its position xt at any time t is within the obstacle. In order
to avoid collision with a given obstacle defined as in Fig. 2
its position must satisfy, for all time steps t = 1, . . . , k:

∨

i=1...N

a
T
i xt > bi. (2)

Hence the constraint that ensures there is no collision with
a given obstacle is a disjunction of linear constraints on the
position of the vehicle at all time steps t. Multiple obstacles
lead to a conjunction of these disjunctions. If there are M

obstacles, where obstacle j is defined by Nj straight lines
of the form a

T
ijx = bij , then collision is avoided if and only

if:
∧

j=1,...,M

∨

i=1,...,N

a
T
ijxt > bij . (3)

2) Obstacle Avoidance for Manipulators: Using (3), joint
l avoids collision with the M obstacles if and only if, for all
time steps t,

∧

j=1,...,M

∨

i=1,...,N

a
T
ijx

(t)
l > bij . (4)

We assume that the links are straight lines between adjacent
joints. The position of a point on the link between joint l

and joint l + 1, is given by (5) where λ ∈ [0, 1].

x = λx
(t)
l + (1 − λ)x

(t)
l+1 (5)

1θ
2θ

α−

α+
)(

2
tx)(

1
tx

Fig. 3. Planar manipulator with symmetric joint angle limits on θ2.

We can choose a point on the link, for example the middle
(halfway between each joint), and constrain this point to miss
obstacles by setting λ = 1

2 and using (4).
∧

j=1,...,M

∨

i=1,...,N

a
T
ij

(

λx
(t)
l + (1 − λ)x

(t)
l+1

)

> bij . (6)

We therefore pick suitably spaced values of λ between zero
and one, and apply (6) for these values. In this way we can
constrain the link to avoid collision with obstacles. By using
finer spacing of the values of λ, we can arbitrarily improve
the performance.

Note that for fixed λ, (6) is linear in the position of the
joints. Hence the constraints that the joints and the links
do not collide with the obstacles are conjunctions of linear
disjunctions. This will be used to pose the path planning
problem as a Disjunctive Program.

B. Manipulator Kinematic Constraints using Quadratic
Constraints

In this section we show that the kinematic constraints on
the manipulator can be expressed using quadratic constraints
on the joint positions.

We assume that a manipulator is made up of L joints
connected by straight links, where joint 0 is the base, and
joint L is the endpoint. This arrangement leads to kinematic
constraints on the positions of the joints. In particular, the
distance between joint l and joint l + 1 must be exactly dl,
where dl is the length of link l, which connects joint l and
joint l + 1.

These kinematic constraints can be expressed as follows,
for all l = 0, . . . , L − 1 and for all t:

(x
(t)
l+1 − x

(t)
l)T (x

(t)
l+1 − x

(t)
l) = dl (7)

Note that these constraints are quadratic in the joint positions.
This will be used to pose the path planning problem as a
Disjunctive Quadratic Program.

Additional kinematic constraints may arise due to joint
angle restrictions. For some manipulator configurations, joint
angle restrictions can be expressed as quadratic constraints
on the joint positions. Here, we demonstrate that this is true
for all planar manipulators with joint angle ranges that are
symmetric about zero.

Consider the planar manipulator shown in Fig. 3. The
angle of joint 1, θ2, can range between +α and −α degrees.
Taking the dot product of the vector x

(t)
2 −x

(t)
1 and the vector

x
(t)
1 − x

(t)
0 gives:

(x
(t)
2 − x

(t)
1)T (x

(t)
1 − x

(t)
0) = d1 · d0 · cosθ2 (8)

The restricted range of joint 2 therefore yields the following
constraint on the joint positions:

(x
(t)
2 − x

(t)
1)T (x

(t)
1 − x

(t)
0) ≥ d1 · d0 · cosα (9)

This, once again, is a quadratic constraint on the joint
positions.

Quadratic constraints can also be used for all planar
manipulators with non-symmetric joint angle ranges less than
180◦. This is achieved by combining constraints such as (9)
with constraints on the dot product between link l and the
vector perpendicular to link l + 1. The full development is
not given here for brevity. Finally, many configurations of
three-dimensional manipulators with joint angle restrictions
can be handled. A concise description of which manipulators
can be handled is an area of ongoing research.

To summarize, kinematic constraints on a manipulator can
be expressed as quadratic constraints on the positions of the
joints at all time steps t.

C. Manipulator Dynamic Constraints

In this section we specify constraints representing the
simplified dynamics of the manipulator. In particular, we
constrain the velocities of the joint positions.

We assume that the speed of the manipulator is kept small
by the user. Since the joint angular velocities are far from
their physical limits, we can constrain the velocities of the
joint positions, rather than that of the joint angular velocities.

By taking an Euler approximation of the joint velocity, the
velocity constraints take the form:

x
(t+1)
l − x

(t)
l

∆t
≤ Vmax, (10)

where ∆t is the duration of the discrete time interval.

D. Optimality

A number of different optimality criteria can be encoded
using linear or quadratic functions of the joint positions,
depending on the application. Here we show that the average
kinetic energy of the manipulator can be expressed as a
quadratic function.

We use x
(t)
cl to donate the vector from the origin to the

center of mass of link l at time t, and ml to donate the mass
of link l. Then the linear approximation of the velocity of
the center of mass of link l is:

v
t
l =

x
(t−1)
cl − x

(t)
cl

∆t
(11)

Then the average kinetic energy of the manipulator over the
planning horizon is:

J =
1

k

∑

t=1,...,k

∑

l=1,...,L

1

2
mlv

(t)T
l v

(t)
l (12)

Since x
(t)
cl is on the link, it is a linear function of the joint

positions x
(t)
l and x

(t)
l+1, as in (5). From (11), v

t
l is a linear

function of the joint positions. Hence the average kinetic
energy J is a quadratic function of the joint positions. This

means that a minimum kinetic energy criterion can be used
in a Disjunctive Quadratic Program. Alternative criteria such
as minimum time can be encoded in a manner similar to that
used for vehicle path planning [7].

The final requirement, that the manipulator endpoint
moves from the start position s to the goal position g, is
encoded as follows:

x
(0)
L = g x

(k)
L = s (13)

IV. SUMMARY

The optimal trajectory planning problem for manipulators,
with obstacles in the workspace, can therefore be expressed
as a Disjunctive Quadratic Program. The decision variables
in this program are the positions of the joints at time
t = 1, . . . , k. The kinematic and dynamic constraints on
the trajectory can be expressed using linear and quadratic
constraints, while various optimality criteria can be expressed
as linear or quadratic functions of the decision variables. Fi-
nally, obstacle avoidance can be expressed using disjunctions
of linear constraints.

This method allows the use of efficient Disjunctive Pro-
gramming techniques that are commercially available. These
constrained optimization techniques are complete, in that
they will return a feasible solution if one exists. Also, since
planning is carried out in the workspace domain, mapping
the obstacles into the configuration space of the manipulator
is unnecessary.

A final remark is that, in the case of a manipulator with
a mobile base, such as a rover with a manipulator arm, the
trajectory planning for the base mobility system (the rover)
can be carried out along with the trajectory planning for
the manipulator, in a unified manner. In other words, in a
cluttered environment, a task can be specified in terms of
the motion of the manipulator endpoint, and by solving a
single Disjunctive Quadratic Program, our method can plan
a trajectory to achieve this goal by moving both the rover
and the manipulator in a safe, optimal manner.

REFERENCES

[1] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots under obstacle and dynamic balance
constraints,” in Proc. IEEE Int. Conf. Robot and Autom., 2001.

[2] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Proc.
IEEE Int. Conf. Robot and Autom., 2000.

[3] E. Balas, “Disjunctive programming,” Annals of Discrete Math, vol. 5,
pp. 3–51, 1979.

[4] A. Prekopa, Nonlinear and Mixed-Integer Programming - Fundamentals
and Applications. Oxford University Press, 1995.

[5] R. Stallman and G. Sussman, “Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis,”
Journal of Artificial Intelligence, vol. 8, 1977.

[6] T. Schouwenaars, B. D. Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Proc. European
Control Conference, 2001.

[7] A. Richards and J. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proc. American
Control Conference, 2002.

[8] T. Leaute and B. C. Williams, “Coordinating agile systems through
the model-based execution of temporal plans,” in Proc. 20th National
Conference on Artificial Intelligence, 2005.

[9] ILOG. CPLEX Product Datasheet. [Online]. Available:
http://www.ilog.com/download/docs/DS-CPLEX2005.pdf

