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Chance-Constrained Optimal Path Planning
with Obstacles

Lars Blackmore, Masahiro Ono and Brian C. Williams

Abstract—Autonomous vehicles need to plan trajectories to
a specified goal that avoid obstacles. For robust execution,
we must take into account uncertainty, which arises due to
uncertain localization, modeling errors, and disturbances. Prior
work handled the case of set-bounded uncertainty. We present
here a chance-constrained approach, which uses instead a prob-
abilistic representation of uncertainty. The new approachplans
the future probabilistic distribution of the vehicle state so that
the probability of failure is below a specified threshold. Failure
occurs when the vehicle collides with an obstacle, or leavesan
operator-specified region. The key idea behind the approach
is to use bounds on the probability of collision to show that,
for linear-Gaussian systems, we can approximate the noncon-
vex chance-constrained optimization problem as a Disjunctive
Convex Program. This can be solved to global optimality using
branch-and-bound techniques. In order to improve computation
time, we introduce a customized solution method that returns
almost-optimal solutions along with a hard bound on the level
of suboptimality. We present an empirical validation with an
aircraft obstacle avoidance example.

I. I NTRODUCTION

Path planning for autonomous vehicles such as Unmanned
Air Vehicles (UAVs) has received a great deal of attention
in recent years [1][2][3][4]. A UAV needs to be able to plan
trajectories that take the aircraft from its current location to
a goal, while avoiding obstacles. These trajectories should
be optimal with respect to a criterion such as time or fuel
consumption. This problem is challenging for two principal
reasons. First, the optimization problem is inherently non-
convex due to the presence of obstacles in the feasible space.
Second, there are a number of sources of uncertainty in
the problem, such as disturbances, uncertain localizationand
modeling uncertainty.

Previous approaches addressed the first of these challenges.
In our work we build on [5], which uses a Mixed-Integer
Linear Programming (MILP) approach to design fuel-optimal
trajectories for vehicles modeled as linear systems. The Mixed-
Integer Linear Programming approach uses highly-optimized
commercial software[6] based on branch-and-cut and a host of
other techniques to make the non-convex optimization problem
tractable[7]. Throughout this paper we similarly assume linear
system dynamics. Prior work (for example [5] and [8]) has
shown that linear system models can be used to design
trajectories for vehicles such as UAVs and satellites.

The MILP approach of [5] does not explicitly take into
account uncertainty. That is, it is assumed in [5] that the
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knowledge of the vehicle’s state is perfect, and that the planned
path can be executed perfectly. In practice the executed path
will deviate from the planned path and can collide with obsta-
cles, even if the planned path did not. For a vehicle such as a
UAV, uncertainty arises for three main reasons. First, aircraft
location is not usually known exactly, but is estimated using
a system model, inertial sensors and/or a Global Positioning
System. Second, system models are approximations of the true
system model, and the system dynamics themselves are usually
not fully known. Third, disturbances act on the aircraft that
make the true trajectory deviate from the planned trajectory.

The problem of path planning under uncertainty was pre-
viously addressed for the case of set-bounded uncertainty
models[9]. In the case of disturbances this corresponds to
having a known bound on the magnitude of the disturbance.
Robustness is achieved by designing trajectories that guarantee
feasibility of the plan as long as disturbances do not exceed
these bounds. In the present paper, we use an alternative ap-
proach that characterizes uncertainty in a probabilistic manner,
and finds the optimal sequence of control inputs subject to
the constraint that the probability of failure must be belowa
user-specified threshold. This constraint is known as achance
constraint[10].

In many cases, the probabilistic approach to uncertainty
modeling has a number of advantages over a set-bounded
approach. Disturbances such as wind are best represented
using a stochastic model, rather than a set-bounded one[11].
When using a Kalman Filter for localization, the state estimate
is provided as a probabilistic distribution specifying themean
and covariance of the state. In addition, by specifying the
probability that a plan is executed successfully, the operator
can stipulate the desired level of conservatism in the plan
in a meaningful manner, and can trade conservatism against
performance.

A great deal of work has taken place in recent years relating
to chance-constrained optimal control of linear systems subject
to Gaussian uncertainty in convex regions[12], [13], [14],[15],
[16], [17], [18]. In the present paper we extend this to the
problem of chance-constrained path planning with obstacles,
i.e. in nonconvex regions. The key idea is to bound the
probability of collision with obstacles to give a conservative
approximation of the full chance-constrained problem. We
provide a new bound that approximates the chance-constrained
problem as a Disjunctive Convex Program. This can be solved
to global optimality using branch-and-bound techniques. In
order to make the computational complexity practical for
onboard use, we introduce a customized solution method for
the Disjunctive Convex Program. This makes use of two
new disjunctive linear bounds on the probability of colli-
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sion, one of which provides a lower bound on the optimal
cost of the Disjunctive Convex Program, while the second
provides an upper bound on the optimal cost. Using these
bounds with highly optimized software for Disjunctive Linear
Programming[6], the customized solution approach is able to
reduce the solution time required dramatically and, in almost
all cases, provide tight bounds on the suboptimality introduced
by not solving the full Disjunctive Convex Program. We
demonstrate our approach in simulation and show that the
conservatism introduced by the approach is small.

II. RELATED WORK

A large body of work exists on the topic of path planning
with deterministic system models, including [1], [2], [3],[4],
[19]. We do not intend to provide a review of this field, but
instead refer the reader to the review [20] and the books
[21] and [22]. Of this work, in the present paper we extend
[5], which introduced a Mixed-Integer Linear Programming
approach that designs fuel-optimal trajectories for vehicles
modeled as linear systems. The MILP approach has the ad-
vantage that the resulting optimization problem can be solved
to global optimality using efficient commercial solvers[6].
Refs. [8] and [3] extended this approach to solve problems
in aircraft and spacecraft trajectory planning. By including
temporally flexible state plans, [23] was able to generate
optimal trajectories for UAVs with time-critical mission plans.

Optimal planning under set-bounded uncertainty has re-
ceived a great deal of attention in the robust Model Predictive
Control (MPC) community[24], [9], [25], [26], [27]. We refer
the interested reader to the review [28] and the references
therein for a more extensive survey. The majority of work in
the MPC literature assumes a convex feasible region. However
the case of obstacle avoidance, i.e. nonconvex feasible regions,
was handled in [9]. In recent years the MPC community has
generated a number of results relating to chance-constrained
optimal control of linear systems in convex regions. The
problem of designing optimal feedforward control sequences
for a fixed feedback structure was considered by [12], [14],
[15], [17], [18], [29]. This work was extended to the problem
of coupled feedforward and feedback control by [30], [31],
[32]. This extension enables the variance of the future state
distribution to be optimized, which is not the case with just
feedforward control. Non-Gaussian uncertainty was handled
by [16], [18], [33] using sampling approaches.

For chance-constrained planning in nonconvex feasible re-
gions, early results in the literature suggested simply convert-
ing the problem into a set-bounded one, by ensuring that the
3-sigma confidence region does not collide with obstacles[34],
[35], [36]. Once this is done, standard approaches for set-
bounded uncertainty can be employed. This approach has been
shown to be conservative by orders of magnitude, meaning
that in many cases, the approach will fail to find a feasible
solution even if one exists[18]. To the authors’ knowledge,the
only prior literature to handle nonconvex chance-constrained
planning without resorting to over-conservative set-conversion
techniques is the authors’ own work[37], [38], [39], [40],
[33]. The approach in [39], [40], [33] uses samples, or

‘particles’, to approximate the planning problem. The particle-
based approach approximates the chance constraint, and hence
does not guarantee satisfaction of the constraint. By contrast,
the approach in the present paper uses an analytic bound
to ensure satisfaction of the constraint. In addition, while
the particle-based approach applies to arbitrary uncertainty
distributions, rather than only Gaussian distributions, it is
significantly more computationally intensive than the bounding
approach proposed in the present paper. In Section XI-C we
provide an empirical comparison of the new approach and
the approach of [33], which demonstrates these points. These
results also show that the new approach introduces very little
conservatism, unlike the set conversion techniques proposed
by [34], [35], [36].

Early forms of the results in this paper were presented
in [37], [38]. The present paper extends these results by
unifying the bounds presented in [37], [38] and deriving a
new suboptimal solution algorithm that reduces computation
time while providing, in almost all cases, tight bounds on the
suboptimality introduced.

III. PROBLEM STATEMENT

In this work, we consider the case where there is uncertainty
in the problem that can be described probabilistically. We
consider three sources of uncertainty:

1) The initial position of the vehicle is specified as a
probabilistic distribution over possible positions. This
distribution would typically be generated with an esti-
mation technique such as Kalman filtering, using noisy
measurements from inertial sensors and global position-
ing data. In this work we assume that the initial position
of the vehicle is specified as a Gaussian distribution.

2) Disturbances act on the vehicle. These are modeled as
a Gaussian noise process added to the system dynam-
ics. In the case of an aircraft, this process represents
accelerations caused by wind.

3) The system model is not known exactly. Uncertainty in
the system model may arise due to modeling errors or
linearization. We assume that model uncertainty can be
modeled as a Gaussian white noise process added to the
system dynamic equations [41].

Throughout this paper we assume a linear, discrete-time
system model. Linear system dynamics are valid for vehicles
such as satellites operating close to a reference orbit, or a
UAV operating with an inner-loop feedback controller. In the
latter, the key idea is that, while the low-level dynamics of
the system are nonlinear, the controlled plant from reference
position to true position can be approximated as a low-order,
linear system for the purposes of path planning[5].

xt+1 = Axt +But + ωt. (1)

Here, xt is the system state at time stept and ut is the
control input at time stept. The variableωt is a Gaussian
white noise process that represents disturbances and model
uncertainty, and is distributed according toωt ∼ N (0, Q). The
assumption of zero mean, white noise is made to simplify the
notation; the methods described in this paper apply equallyto
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Fig. 1. Polyhedral stay-in region I encoded as a conjunction of linear
inequality constraints. The vehicle must remain in the unshaded region.

Gaussian colored, non-zero-mean noise as long as the statistics
are known.

In this paper we consider polygonal convexstay-in regions
in which the system state must remain, and polygonal convex
obstacles, outside of which the system state must remain1.
A stay-in region I is defined as a conjunction of linear
constraints as follows:

I ⇐⇒
∧

t∈T (I)

∧

i∈G(I)

a
′
ixt ≤ bi, (2)

where G(I) is a set containing the indices of the linear
constraints defining the region, andT (I) is the set of time
steps at which the stay-in region applies. We usev

′ to denote
the transpose of vectorv. An obstacleO is defined as a
disjunction of linear constraints as follows:

O ⇐⇒
∧

t∈T (O)

∨

i∈G(O)

a
′
ixt ≥ bi, (3)

where againG(O) is the set containing the indices of the linear
constraints defining the obstacle, andT (O) is the set of time
steps at which the obstacle must be avoided. In this notation
we use∧ to denote logical AND and∨ to denote logical OR.
Stay-in constraints and obstacles are illustrated in Figures 1
and 2. We state the probabilistic path planning problem as
follows:

Given a probability distribution for the initial
vehicle position, and given a desired goal position,
design a finite, optimal sequence of control inputs
u0...uk−1 such that the expected final vehicle
position corresponds to the goal position, and such
that the probability that the vehicle leaves a stay-in
region or collides with an obstacle is at most∆.

The problem is defined formally here:

Problem 1 (Chance-constrained path planning problem).

1Note that nonconvex obstacles can be created by composing several convex
obstacles.
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Fig. 2. Polyhedral obstacle O encoded as a disjunction of linear equality
constraints. The vehicle must avoid the shaded region.

min
u0,...,uk−1

g(u0, . . . ,uk−1, x̄0, . . . , x̄k) (4)

subject to: (5)

x̄k = xgoal (6)

xt+1 = Axt +But + ωt (7)

x0 ∼ N (x̂0, P0) ωt ∼ N (0, Q) (8)

P

(

(

NI
∧

i=1

Ii
)

∧
(

NO
∧

j=1

Oj

)

)

≥ 1−∆, (9)

whereg(·) is a piecewise linear cost function such as time or
fuel, andNI andNO are the number of stay-in regions and
obstacles respectively. We usev̄ to denote the expectation ofv.
We assume throughout this paper that∆ ≤ 0.5.

The key difficulty in solving Problem 1 is the non-convex
chance constraint (9). There are two difficulties in handling
this constraint. First, evaluating the chance constraint requires
the computation of the integral of a multi-variable Gaussian
distribution over a finite, non-convex region. This cannot be
carried out in closed form, and approximate techniques such
as sampling are time-consuming and introduce approxima-
tion error. Second, even if this integral could be computed
efficiently, its value is non-convex in the decision variables
due to the disjunctions inOi. This means that the resulting
optimization problem is, in general, intractable. A typical
approach to dealing with non-convex feasible spaces is the
branch and bound method, which decomposes a non-convex
problem into a tree of convex problems. However the branch
and bound method cannot be directly applied, since the non-
convex chance constraint cannot be decomposed trivially into
subproblems.

In order to overcome these two difficulties, we propose
a bounding approach to decompose the non-convex chance
constraint conservatively into a set of individual chance con-
straints, each of which is defined on a univariate probability
distribution. Integrals over univariate probability distributions
can be evaluated accurately and efficiently, and the decompo-
sition of the chance constraint enables the branch and bound
algorithm to be applied to find the optimal solution.
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IV. EXISTING RESULTS

In this section we provide some important definitions and
review known results to be used later.

A. Disjunctive Convex Programs

Problem 2. A Disjunctive Convex Programis defined as:

min
X

h(X)

subject to:

feq(X) = 0

ndis
∧

i=1

ncl
∨

j=1

cij(X) ≤ 0, (10)

wherefeq(X) is a linear function ofX , thecij(X) are convex
functions ofX , andndis andncl are the number of disjunctions
and clauses within each disjunction, respectively.

Problem 3. A Disjunctive Linear Programis defined as (10)
wherefeq(X) andcij(X) are linear functions ofX .

The key difficulty in solving a disjunctive convex program
is that the disjunctions in (10) render the feasible region
nonconvex. Nonconvex programs are, in general, intractable.
In the case of a disjunctive convex program, however, we
can decompose the overall optimization problem into a finite
number of subproblems that are convex programs. Convex pro-
grams can be solved to global optimality with analytic bounds
on the number of iterations required for convergence[42],
[43]. The number of convex subproblems is exponential in
the number of disjunctionsndis. However, for many practical
problems, a branch-and-bound approach has been shown to
find the globally optimal solution while solving only a small
subset of those required in the theoretical worst case[44],[45].
In Appendix A we describe a branch-and-bound approach for
solving a general disjunctive convex program.

B. Propagation of Linear Gaussian Statistics

In this paper we assume that the initial state has a Gaussian
distributionN (x̂0, P0), that the system dynamics are linear,
and that there are additive Gaussian white noise processes
corresponding to model uncertainty and disturbances. Under
these assumptions, the distribution of the future state is also
Gaussian, i.e.p(Xt|u0,...,k−1) ∼ N (µt,Σt). By recursive
application of the system equations the distribution of the
future state can be calculated exactly as:

µt =
t−1
∑

i=0

At−i−1Bui +At
x̂0 (11)

Σt =

t−1
∑

i=0

AiQ(AT )i +AtP0(A
T )t. (12)

There are two important properties to note here:

1) The equation for the mean of the state at timet is linear
in the control inputsu0, . . . ,ut−1.

p(X<0) = 0.1 

0 µ=1.163 

Fig. 3. Univariate Gaussian distribution with mean µ and variance 1. For
fixed variance, the chance constraint p(X < 0) ≤ 0.1 is satisfied if and
only if µ ≥ 1.163

2) The covariance of the state at timet is not a function of
the the control inputsu0, . . . ,ut−1. This means that for
a given initial state covariance, and with known noise
covariances, the covariance at a future time is known
exactly.

These two properties enable the obstacle avoidance problem
to be framed as a Disjunctive Convex Program, as will be
shown in Section VI.

C. Linear Chance Constraints as Deterministic Linear Con-
straints

In this section, we show that linear chance constraints on
the state of the vehicle at timet, can be expressedexactly
as deterministic linear constraints on the mean of the vehicle
state at timet [10]. In general, a chance constraint on a
singlevariate Gaussian random variableX ∼ N (µ, σ2) with
fixed variance but variable mean, can be translated into a
deterministic constraint on the mean:

p(X < 0) ≤ δ ⇐⇒ µ ≥ c (13)

This is illustrated in Figure 3. The value of the deterministic
constraintc is calculated as follows:

c =
√
2σ · erf−1(1 − 2δ), (14)

where erf is defined as:

erf(z) =
2√
π

∫ z

0

e−t2dt. (15)

The inverse of erf can be calculated using a look-up method.
Note that only one look-up table is required for any Gaussian
distribution. For (14) to be valid, we assume that the proba-
bility δ is less than 0.5.

Now consider the case of a multivariate Gaussian random
variableXt, corresponding to the position of the vehicle at
time t, which has meanµt and covarianceΣt, and the linear
chance constraintp(aTXt < b) ≤ δ. The eventaTXt < b is
equivalent to the eventV < 0, whereV is the singlevariate
random variable that corresponds to the perpendicular distance
between the constraintaTx = b andx, as shown in Fig. 4.

The random variableV is a derived variable of the multivari-
ate random variableXt. It can be shown thatV is a univariate
Gaussian random variable, with meanµv and varianceσv,
where:

µv = a
Tµt − b, (16)

and
σv =

√

aTΣta. (17)
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Fig. 4. Linear constraint and vehicle position Xt. V is the distance
between the constraint and the vehicle, defined as positive for values
of Xt for which the constraint is satisfied, and negative for value of Xt

for which the constraint is violated. The vector a1 is the unit normal in
the direction of positive V .

The linear chance constraintp(aTXt < b) ≤ δ is therefore
equivalent to a chance constraintp(V < 0) ≤ δ on the
univariate Gaussian random variableV . This can be expressed
as a deterministic constraint on the mean, of the formµv ≥ c,
wherec is given by (14), withσ = σv.

Expressing this deterministic constraint in terms of the
original variableXt yields:

p(aTXt < b) ≤ δ ⇐⇒ a
Tµt − b ≥ c, (18)

where:

c =
√

2aTΣta · erf−1(1 − 2δ). (19)

This calculation requires knowledge ofΣt, the covariance
of the state at timet. In Section IV-B we showed thatΣt

does not depend on the control inputs, and therefore given
an initial state covariance and the noise process covariances,
we can a priori calculateΣt using (12). Furthermore, the
right hand side of (18) is linear in the meanµt. Hence linear
chance constraints on vehicle state can be expressed,without
approximation, as deterministic linear constraints on the mean
of the vehicle state.

V. D ISJUNCTIVE CONVEX BOUND FORNONCONVEX

FEASIBLE REGIONS

In this section we describe our main technical result, a
novel bound that enables the chance constrained path planning
problem (Problem 1) to be approximated as a Disjunctive
Convex Program. This extends the bound in [46] from convex
polytopic feasible regions to nonconvex polytopic feasible
regions.

Lemma 1 (Disjunctive Convex Bound).

P

(

(

NI
∧

i=1

Ii
)

∧
(

NO
∧

j=1

Oj

)

)

≥ 1−∆

⇐=

(

NI
∧

j=1

∧

t∈T (Ij)

∧

i∈G(Ij)

bi − a
T
i µt ≥ ct,i

(

δ(Ij , t, i)
)

)

∧
(

NO
∧

j=1

∧

t∈T (Oj)

∨

i∈G(Oj)

a
T
i µt − bi ≥ ct,i

(

δ(Oj , t)
)

)

∧
NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

δ(Ij , t, i) +
NO
∑

j=1

∑

t∈T (Oj)

δ(Oj , t) ≤ ∆,

(20)

where:

ct,i
(

ξ
)

=
√

2aTi Σtai · erf−1

(

1− 2ξ

)

. (21)

Proof: Using DeMoivre’s theorem we have:

P

(

(

NI
∧

i=1

Ii
)

∧
(

NO
∧

j=1

Oj

)

)

= 1− P

(

(

NI
∧

i=1

Ĩi
)

∨
(

NO
∧

j=1

Õj

)

)

,

(22)

where Ã denotes the logical complement of eventA. From
the definitions ofI andO we can write:

Ĩi ⇐⇒
∨

t∈T (Ij)

∨

i∈G(Ij)

a
′
ixt > bi

Õi ⇐⇒
∨

t∈T (Oj)

∧

i∈G(Oj)

a
′
ixt ≤ bi (23)

Boole’s bound shows that for any two eventsA andB:

P (A ∨B) ≤ P (A) + P (B), (24)

and hence for any number of eventsAi we have:

P

(

∨

i

Ai

)

≤
∑

i

P (Ai). (25)

In addition, for any two eventsA andB it is well known that:

P (A ∧B) ≤ P (A) P (A ∧B) ≤ P (B), (26)

and hence for any number of eventsAi we have:

P

(

∧

i

Ai

)

≤ P (Aj) ∀j. (27)

The bounds (25) and (27) form the core of our disjunctive
convex bound. Using these two results, we can show that:

P

(

(

NI
∧

i=1

Ii
)

∧
(

NO
∧

j=1

Oj

)

)

≥ 1−
NI
∑

i=1

P (Ĩi)−
NO
∑

j=1

P (Õj).

(28)
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Applying Boole’s bound again, and the result in (23) we have:

P

(

(

NI
∧

i=1

Ii
)

∧
(

NO
∧

j=1

Oj

)

)

≥

1−
NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

P (a′ixt > bi)

−
NO
∑

j=1

∑

t∈T (Oj)

(

P (a′lxt ≤ bl) ∀l ∈ G(Oj)
)

. (29)

From (18) we know that:

bi − a
T
i µt ≥ ct,i(ξ) =⇒ P (a′ixt > bi) ≤ ξ

a
T
i µt − bi ≥ ct,i(ξ) =⇒ P (a′ixt < bi) ≤ ξ. (30)

Hence:
(

NI
∧

j=1

∧

t∈T (Ij)

∧

i∈G(Ij)

bi − a
T
i µt ≥ ct,i

(

δ(Ij , t, i)
)

)

∧
(

NO
∧

j=1

∧

t∈T (Oj)

∨

i∈G(Oj)

a
T
i µt − bi ≥ ct,i

(

δ(Oj , t)
)

)

∧
NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

δ(Ij , t, i) +
NO
∑

j=1

∑

t∈T (Ij)

δ(Oj , t) ≤ ∆

=⇒ ∃l(j, t) such that:
NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

P (a′ixt > bi)

+

NO
∑

j=1

∑

t∈T (Oj)

P (a′l(j,t)xt ≤ bl(j,t))

≤
NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

δ(Ij , t, i) +
NO
∑

j=1

∑

t∈T (Oj)

δ(Oj , t) ≤ ∆

=⇒ P

(

(

NI
∧

i=1

Ii
)

∧
(

NO
∧

j=1

Oj

)

)

≥ 1−∆, (31)

which completes the proof.
In (20) the parametersδ(Ij , t, i) and δ(Oj , t) are referred

to as therisk that is allocated to each of the univariate chance
constraints. By ensuring that these risks sum to at most∆, we
ensure that the overall probability of failure is at most∆, as
required. We refer to the optimization of the individual risks
δ(·) asrisk allocation, whereas the process of choosing which
of the disjunctions in (20) to satisfy is calledrisk selection.

VI. PATH PLANNING USING DISJUNCTIVE CONVEX

PROGRAMMING

In this section we approximate the chance constrained
path planning problem (Problem 1) as a Disjunctive Convex
Program using the bound introduced in Section V.

Problem 4 (Path Planning as Disjunctive Convex Program).

min
u0,...,uk−1,δ(·)

g(u0, . . . ,uk−1, x̄0, . . . , x̄k) (32)

subject to (11), (12), (21), and: (33)

x̄k = xgoal (34)
NI
∧

j=1

∧

t∈T (Ij)

∧

i∈G(Ij)

bi − a
T
i µt ≥ ct,i

(

δ(Ij , t, i)
)

(35)

NO
∧

j=1

∧

t∈T (Oj)

∨

i∈G(Oj)

a
T
i µt − bi ≥ ct,i

(

δ(Oj , t)
)

(36)

NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

δ(Ij , t, i) +
NO
∑

j=1

∑

t∈T (Oj)

δ(Oj , t) ≤ ∆

(37)

δ(Ij , t, i) ≥ 0 δ(Oj , t) ≥ 0 ∀j, t, i. (38)

Lemma 2. Any feasible solution to Problem 4 is a feasible
solution to Problem 1.

Proof: Lemma 1 shows that the constraints (35)
through (38) imply the full chance constraint (9). All other
constraints are identical between Problem 1 and Problem 4,
which completes the proof.

Lemma 3. For ∆ ≤ 0.5, Problem 4 is a Disjunctive Convex
Program.

Proof: The fact that∆ ≤ 0.5 implies thatδ(Ij , t, i) ≤ 0.5
and δ(Oj , t) ≤ 0.5. The functionct,i(ξ) is convex inξ for
ξ ≤ 0.5. This implies that each of the scalar inequalities:

bi − a
T
i µt ≥ ct,i

(

δ(Ij , t, i)
)

, (39)

is convex in the decision variablesδ(Ij , t, i) and µt. Hence
the conjunction of inequalities (35) is convex in the decision
variables. In addition the scalar inequalities:

a
T
i µt − bi ≥ ct,i

(

δ(Oj , t)
)

, (40)

are convex in the decision variablesδ(Oj , t) andµt. Hence
(36) is a disjunction of convex inequalities. Since the equality
constraints and the inequality (37) are linear, Problem 4 isa
Disjunctive Convex Program.

Since Problem 4 is a Disjunctive Convex Program, we can
use the existing approaches reviewed in Appendix A to solve it
to global optimality in finite time, and from Lemma 2 we know
that the resulting sequence of control inputs is guaranteedto
be feasible for the original chance constrained path planning
problem. Solution of the full Disjunctive Convex Program,
however, is slow. In the following sections we propose an
approach to solve Problem 4 approximately, in order to reduce
the computation time dramatically.

VII. F IXED RISK TIGHTENING

In this section we provide a tightening of Problem 4, where
each of the risks allocated to each chance constraint has a
fixed value. Thisfixed risk tightening(FRT) is used to give an
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upper bound on the optimal cost of Problem 4. The tightening
is a Disjunctive Linear Program, and hence can be solved
efficiently using highly optimized commercial solvers[6].

Problem 5 (Fixed Risk Tightening).

min
u0,...,uk−1

g(u0, . . . ,uk−1, x̄0, . . . , x̄k) (41)

subject to (11), (12), (21), and: (42)

x̄k = xgoal (43)
(

NI
∧

j=1

∧

t∈T (Ij)

∧

i∈G(Ij)

bi − a
T
i µt ≥ ct,i(δ)

)

(44)

(

NO
∧

j=1

∧

t∈T (Oj)

∨

i∈G(Oj)

a
T
i µt − bi ≥ ct,i(δ)

)

(45)

δ =
∆

NI
∑

j=1

∑

t∈T (Ij)

|G(Ij)|+
NO
∑

j=1

|T (Oj)|
(46)

ct,i(δ) =
√

2aTi Σtai · erf−1(1− 2δ). (47)

We use| · | to denote the number of elements in a set. The
main difference between Problem 5 and Problem 4 is that in
Problem 5 the risks associated with violation of each constraint
are a priori set to a fixed and equal valueδ, given by (46),
whereas in Problem 4 the risks are optimization variables.

Lemma 4. Any feasible solution to Problem 5 is a feasible
solution to Problem 1.

Proof: Setting δ(Ij , t, i) = δ(Oj , t, i) = δ in (20) and
noting that:

NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

δ +

NO
∑

j=1

∑

t∈T (Oj)

δ = ∆, (48)

we see that Lemma 1 shows that the constraints (44) through
(47) imply the full chance constraint (9). All other constraints
are identical between Problem 1 and Problem 5, which com-
pletes the proof.

Lemma 5. A solution to Problem 5 is a feasible solution to
Problem 4, and the optimal solution to Problem 5 has cost
greater than, or equal to, the cost of the optimal solution to
Problem 4.

Proof: Comparison of the constraints in Problem 4 and
Problem 5 shows that the feasible set of Problem 5 is contained
in the feasible set of Problem 4, from which the results follow.

Problem 5 is a Disjunctive Linear Program since we have
assumed a linear cost, the equality constraints are linear in
the decision variablesu0, . . . ,uk+1, and the disjunctive con-
straints (44) through (47) are linear in the decision variables.

VIII. F IXED RISK RELAXATION

In this section we provide a relaxation of the full Disjunctive
Convex Program given in Problem 4, which we call thefixed
risk relaxation (FRR). As in Section VII, each of the each
of the risks allocated to each chance constraint has a fixed

value, however the fixed value is now chosen so that the
new approximation is a relaxation of Problem 4. We use this
relaxation to provide a lower bound on the optimal cost of
Problem 4. Since the relaxation given in this section is a
Disjunctive Linear Program, it can be solved efficiently using
highly optimized commercial solvers.

Problem 6 (Fixed Risk Relaxation).

min
u0,...,uk−1

g(u0, . . . ,uk−1, x̄0, . . . , x̄k) (49)

subject to (11), (12), (21), and: (50)

x̄k = xgoal (51)
(

NI
∧

j=1

∧

t∈T (Ij)

∧

i∈G(Ij)

bi − a
T
i µt ≥ ct,i(∆)

)

(52)

(

NO
∧

j=1

∧

t∈T (Oj)

∨

i∈G(Oj)

a
T
i µt − bi ≥ ct,i(∆)

)

(53)

ct,i(∆) =
√

2aTi Σtai · erf−1(1− 2∆). (54)

The key difference between Problem 6 and Problem 5 is that in
Problem 6 the risks associated with violation of each constraint
are a priori set to a fixed and equal value∆, whereas in
Problem 5 they are set to a smaller value given by (46).

Lemma 6. The optimal cost obtained by solving Problem 6
is a lower bound on the optimal cost obtained by solving
Problem 4.

Proof: It follows from (37) and (38) thatδ(Ij , t, i) ≤ ∆
and δ(Oj , t) ≤ ∆ ∀j, t, i. Since ct,i(ξ) is a monotonically
decreasing function ofξ, all scalar chance constraints in (52)
and (53) of Problem 6 are looser than the scalar chance
constraints in (35) and (36) of Problem 4. Therefore, the cost
of the optimal solution of Problem 6 is less than or equal to
the optimal cost of Problem 4.

The Fixed Risk Relaxation (Problem 6) is a Disjunctive
Linear Program.

IX. SOLVING THE DISJUNCTIVE CONVEX PROGRAM

The Disjunctive Convex Program for Path Planning given
in Problem 4 can be solved to global optimality using existing
branch and bound techniques. In Appendix A we give an
overview of these techniques. Applying this approach to
Problem 4, however, is time-consuming, since it requires
the solution of a (potentially) large number of nonlinear
convex programs. Hence its applicability to onboard trajectory
generation is limited. Instead, we propose in this section a
customized solution method that, using the bounds in Sec-
tions VII and VIII, dramatically improves computation speed
while providing solutions that are suboptimal by a known
amount. In Section XI we show empirically that, for a UAV
path planning example, the level of suboptimality is very small
in almost all cases.

A. Customized Approach

The main idea behind the customized approach is to solve
first the fixed risk relaxation and the fixed risk tightening to
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provide, respectively, lower and upper bounds on the optimal
cost of Problem 4, and then use the returned solutions to iden-
tify convex regions in which to look for improved solutions.
The approach requires the solution of, at most, two Disjunctive
Linear Programs and two Convex Programs, and hence can be
solved quickly to global optimality.

First, we introduce another tightening of Problem 4.

Problem 7 (Risk Allocation in Convex Region).

min
u0,...,uk−1,δ(·)

g(u0, . . . ,uk−1, x̄0, . . . , x̄k) (55)

subject to: (56)

x̄k = xgoal (57)

xt+1 = Axt + But + ωt (58)

x0 ∼ N (x̂0, P0) ωt ∼ N (0, Q) (59)
(

NI
∧

j=1

∧

t∈T (Ij)

∧

i∈G(Ij)

bi − a
T
i µt ≥ ct,i

(

δ(Ij , t, i)
)

)

(60)

(

NO
∧

j=1

∧

t∈T (Oj)

a
T
H(t,Oj)

µt − bH(Oj) ≥ ct,H(t,Oj)

(

δ(Oj , t)
)

)

(61)
NI
∑

j=1

∑

t∈T (Ij)

∑

i∈G(Ij)

δ(Ij , t, i) +
NO
∑

j=1

∑

t∈T (Oj)

δ(Oj , t) ≤ ∆

(62)

δ(Ij , t, i) ≥ 0 δ(Oj , t) ≥ 0 ∀j, t, i. (63)

Here H(t,O) is a mapping from an obstacle-timestep pair
{O, t} to the index of a single constraint within obstacleO.
The main difference between Problem 4 and Problem 7 is
that in Problem 7, the disjunction of constraints has been
replaced with a single constraint to be satisfied for each
obstacle, for each time step. As a consequence, Problem 7 is a
Convex Program, rather than a Disjunctive Convex Program,
and Problem 7 is a tightening of Problem 4.

Lemma 7. Any feasible solution to Problem 7 is a feasible
solution to Problem 4, and the optimal cost of Problem 7 is
an upper bound on the optimal cost to Problem 4.

Proof: By comparison of constraints, we see that Prob-
lem 7 is a tightening of Problem 4, from which the proof
follows.
The customized solution approach is as follows:

Algorithm 1 (Customized solution approach).

1) SetJUB = +∞, JLB = −∞ andsol∗ = ∅.
2) Solve fixed risk relaxation (Problem 6). If infeasible, set

JLB = +∞ and stop, else assign optimal cost toJLB.
3) Assign toH(t,Oj) the set of constraints in (53) that

were, for each timestept, for each obstacleOj , satisfied
with the greatest margin in Problem 6.

4) Solve risk allocation in convex region (Problem 7). If fea-
sible, assign optimal cost toJUB , assign optimal solution
to sol∗ and stop.

5) Solve fixed risk tightening (Problem 5). If feasible, assign
optimal cost toJUB and assign optimal solution tosol∗,
otherwise setJUB = +∞ and stop.

6) Assign toH(t,Oj) the set of constraints in (45) that
were, for each timestept, for each obstacleOj , satisfied
with the greatest margin in Problem 5.

7) Solve risk allocation in convex region (Problem 7). As-
sign optimal cost toJUB and optimal solution tosol∗.

Theorem 1. Upon termination of the customized approach,
any solutionsol∗ returned is a feasible solution to Problem 4
andJLB ≤ J∗ ≤ JUB , whereJ∗ is the optimal cost to Prob-
lem 4. In addition,sol∗ is a feasible solution to Problem 1, and
JUB is an upper bound on the optimal cost for Problem 1.

Proof: From Lemmas 5 and 7 we know that the solutions
assigned tosol∗ in Steps 4, 5 and 7 are feasible solutions
to Problem 4, and hence all of the values assigned toJUB

are upper bounds onJ∗. From Lemma 6 we know that the
value assigned toJLB in Step 2 is a lower bound onJ∗. From
Lemma 2, the rest of the proof follows.

The customized solution approach therefore provides
bounds on the suboptimality of the solution that it returns.

In Steps 4 and 7 we choose to solve the risk allocation in
the convex region defined by the set of constraints that were
satisfied by the greatest margin in Steps 2 and 5, respectively.
This is a heuristic that we claim leads to good solutions in most
cases. When allocating risk from the fixed risk tightening, the
goal is to start from a feasible upper bound on the optimal
cost and push the state mean closer to the obstacles to reduce
cost. Hence choosing constraints that the mean is furthest away
from is reasonable heuristic. Similarly, when allocating risk
from the fixed risk relaxation, the goal is to find a feasible
solution starting from an infeasible lower bound on the cost.
Hence choosing constraints such that there is the greatest
possible margin to each constraint is an intuitive approach.

B. Discussion of customized approach

Unlike the full branch and bound algorithm given in Ap-
pendix A, it is possible for the customized approach to return
no solution, when one does exist, along with the trivial bounds
−∞ ≤ J∗ ≤ ∞. Note, however, that this only occurs if
the fixed risk relaxation (Step 2) returns a feasible solution,
but none of the subsequent steps returns a feasible solution.
Intuitively, this occurs only when an optimal solution exists,
but in a different convex region from both the fixed risk
relaxation and the fixed risk tightening. In Section XI we show
that, for a UAV path planning problem, this situation occurs
very infrequently in practice By the same token, it is possible
for the algorithm to return very loose (but nontrivial) bounds
on J∗. Intuitively, this occurs when the fixed risk relaxation
step finds a solution in a different convex region than the
solution found in the fixed risk tightening step, but no feasible
solution is found in Step 4. This occurs when there are very
different corridors through the obstacle field, at least twoof
which have probabilities of failure close to the requirement ∆.
Again, in Section XI we show that, for a UAV path planning
problem, this situation occurs very infrequently in practice,
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I 

FRT  

Convex bound 

True bound 

FRR 

Fig. 5. Stay-in region from Figure 1 and illustration of bounds. The lines
show the feasible regions for a given value of ∆ for the various bounds
introduced in this paper.

and thatJLB andJUB are very close in almost all cases. Hence
in almost all cases the customized solution approach either
correctly identifies that Problem 4 is infeasible, or returns a
solution that is very close to the optimal solution to Problem 4.

X. I LLUSTRATION OF BOUNDS

The various bounds introduced in this paper are illustrated
for a single timestep for the case of a single stay-in region in
Figure 5 and for the case of a single obstacle in Figure 6. In
Figure 5 it can be seen that the FRT used in Problem 5 has the
smallest feasible region, since it is the most conservative. This
feasible region is generated by backing off from each of the
linear constraints so that each is violated with probability at
most∆/|G(I)|. Note that in the figure, the backoff distance is
equal for all constraints indicating thatp(xt) is symmetric, but
this is not necessarily true in general. The convex bound used
in Problem 4 is significantly less conservative. This bound
uses risk allocation to assign different risks to each of the
linear constraints. Away from the corners of the stay-in region,
virtually all of the available risk∆ is allocated to a single
constraint. Since in a one-dimensional case, the conversion
from the chance constraint to a deterministic constraint onthe
mean is exact, away from the corners the feasible region with
the convex bound is very close to the feasible region of the true
problem (Problem 1) shown in red. At the corners, however,
the convex bound still has noticeable conservatism. This is
because, at the corners, a similar amount of risk is allocated
to more than one linear constraint, and in doing so we incur the
conservatism of Boole’s bound. Finally, it can be seen that the
Fixed Risk Relaxation (Problem 6) has a larger feasible region
than the convex problem since it is a relaxation of Problem 4,
and that the feasible region is a polytope since the FRR is
a linear program. In Figure 6 it can be seen that the FRT
is again conservative, and gives a polytopic feasible region
as expected. For a single obstacle and time step, the convex
bound, FRT and FRR are identical. The FRT feasible region
is generated by backing off from each of the edges of the
obstacle such that the probability of violation of a single linear

!

!"

"#$%!&'()*+!,'-(.%!"##!

$/-*!,'-(.!

Fig. 6. Obstacle from Figure 2 and illustration of bounds. The lines
show the feasible regions for a given value of ∆ for the various bounds
introduced in this paper. Note that since we have a single obstacle and
time step, the convex bound, FRT and FRR are identical.

constraint is at most∆. Away from the corners of the obstacle,
the probability of collision with the obstacle is very closeto the
probability of violation of a single linear constraint. Hence the
true feasible region is close to the FRT feasible region away
from the corners, as can be seen in Figure 6. Again the Fixed
Risk Relaxation (Problem 6) has a larger feasible region than
the true problem and the feasible region is a polytope since
the FRR is a linear program.

XI. SIMULATION RESULTS

In this section, we demonstrate, in simulation, the new
method for chance-constrained path planning, using a UAV
path planning example. In this example a UAV is operating in
a two-dimensional obstacle field, subject to uncertain localiza-
tion and wind disturbances. The UAV must plan a path from its
initial state, to a goal location, subject to a chance constraint
that ensures the probability of collision with any obstacleis at
most∆. This problem is an example of the chance-constrained
path planning problem (Problem 1). We solve this using the
customized solution approach (Algorithm 1), which involves
the solution of the FRT (Problem 5), the FRR (Problem 6),
and risk allocation in convex regions (Problem 7). We use the
YALMIP interface for Matlab[47], with CPLEX[6] used to
solve the MILPs generated by the FRR and FRT steps, and
with SNOPT[48] used to solve the nonlinear convex programs
generated by the risk allocation steps.

The UAV is modeled as a double integrator with an inner-
loop velocity controller and maximum velocity constraints, as
proposed by [5]. The state and control inputs to this system
are defined by:

xt ,









pxt
vxt
pyt
vyt









u ,

[

vxt,des
vyt,des

]

, (64)

wherepxt andpyt are the positions of the UAV along the x and y
axes at timet, vxt andvyt are the UAV velocities at timet, and
the desired velocities to be tracked by the velocity controller
are denotedvxt,des and vyt,des. We implement a maximum
velocity constraint of3m/s as a constraint on the 2-norm of
the mean velocity, approximated as a 32-sided polygon. This
is illustrated in Figure 7. We discretize the closed-loop UAV
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Fig. 7. Approximation of 2-norm constraint as 32-sided polygon. This
approximation is used both in bounding the velocity of the UAV to 3m/s
(as shown here) and in computing the cost of the planned path, which is
proportional to the 2-norm of velocity.

dynamics with a time step of∆t = 1s, giving the dynamics:

A =









1 0.7869 0 0
0 0.6065 0 0
0 0 1 0.7869
0 0 0 0.6065









B =









0.2131 0
0.3935 0

0 0.2131
0 0.3935









.

(65)

The cost functiong(·) is defined to be proportional to the
magnitudes of the commanded velocities, such that:

g(u0, . . . ,uk−1, x̄0, . . . , x̄k) ,
k−1
∑

t=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

vxt,des
vyt,des

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

, (66)

where the 2-norm is approximated using a 32-sided polygon
as in Figure 7. The initial state of the UAV is modeled as a
Gaussian random variable as in Problem 1, where:

x̂0 ,









0
0
0
0









P0 ,









0.052 0 0 0
0 0.00052 0 0
0 0 0.052 0
0 0 0 0.00052









.

(67)

The disturbance processωt is modeled as a zero-mean Gaus-

sian with covariance:

Q ,









0.3555 0 0 0
0 0.6320 0 0
0 0 0.3555 0
0 0 0 0.6320









. (68)

For all maps in this section we usek = 20 time steps and the
goal is given by:

xgoal ,

[

0
10

]

. (69)

In Section XI-A we give results for a single obstacle field,
designed to be challenging for a chance-constrained path
planning algorithm. In Section XI-B we give statistical results
using randomized obstacles fields.

A. Hard map results

In this section we consider the map shown in Figure 8.
This map is chosen in order to be challenging for the chance-
constrained path planning algorithm, because for certain values
of ∆ there is a path through the narrow corridor at(−1, 5)
that barely satisfies the chance constraint2. Figure 8 shows
an example of the path planned by the customized solution
algorithm for ∆ = 0.001. For this particular path, the cost
is 10.37, the estimated probability of collision is4.6× 10−4,
which satisfies the chance constraint, and the solution time
is 16.4s. The lower bound on the cost is 10.27, hence the
suboptimality introduced by using the customized approach,
rather than full Disjunctive Convex Programming, is at most
0.97%. Figure 9 shows the planned path for a range of different
values of∆. As the user-specified allowable probability of
collision decreases, the planned path becomes more conserva-
tive, and eventually changes from passing through the narrow
corridor to taking a significantly longer, but safer, path around
the outside. Figure 10 shows that, as∆ decreases, the cost
increases monotonically. This illustrates an important property
of chance-constrained planning, where the operator can trade
optimality against conservatism.

Figure 11 illustrates how the customized solution for chance
constrained path planning described in Section IX operates.
In this case we set∆ = 0.001. Figure 11 shows that the
fixed risk relaxation (Step 2) finds a path through the corridor,
however since this is a relaxed solution, we do not know that it
satisfies the chance constraint. In Step 4 the method then uses
risk allocation to find a solution that does satisfy the chance
constraint, in the vicinity of the fisked risk relaxation. For
illustration we also show the solutions that would be given
by the fixed risk tightening (Step 5) and risk allocation in
the vicinity of the fisked risk tightening (Step 7). While both
of these solutions are feasible for the chance-constrainedpath
planning problem, the conservatism of the bounds used means
they fail to find the path through the corridor, even though one
exists. This example is chosen to illustrate the value of using
the fixed risk relaxation to initialize the search for a feasible
solution. Figure 12 compares the true probability of collision,

2Note that a map for which no feasible path exists is easier forthe path
planning algorithm, since that infeasibility can typically be detected quickly.
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Fig. 8. Example solution with hard map and ∆ = 0.001. The goal is
shown as the small blue square at (0, 10). The dots show the mean of
the planned UAV position at each time step, and the ellipses give the
99% certainty region for the position.
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Fig. 9. Solutions with hard map for range of different ∆ values. The dots
show the mean of the planned UAV position at each time step.

estimated using106 Monte Carlo simulations, with the max-
imum allowable probability of failure∆. This shows that the
bounding approach introduced in this paper is conservative
by a factor of approximately 2, and does not depend on∆.
This conservatism is many orders of magnitude better than
the values reported in [49], [18], [50], [33] on the bounding
approaches of [30], [34], [35], [36], [29]. Furthermore those
approaches apply only to convex feasible regions, unlike the
new disjunctive convex bound.

To compare the computational efficiency of the customized
solution approach against full Disjunctive Convex Program-
ming, we posed the same chance-constrained path planning
problem as a full Disjunctive Convex Program (Problem 4).
The YALMIP branch-and-bound solver was used with SNOPT
as the solver for the convex subproblems. First, we solved
the problem removing all obstacles except the one centered
at (0.5, 5). In this case the optimal solution was found in
112.04s. Then we attempted to solve the problem with all
obstacles, however in this case the full Disjunctive Convex
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Fig. 10. Cost of returned solution against ∆. As the maximum allowable
probability of failure specified by the operator increases, the cost de-
creases monotonically. The sharp drop corresponds to finding the path
through the narrow corridor.
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Fig. 11. Illustration of custom solution method for ∆ = 0.001. Fixed risk
relaxation finds a path through the corridor, which may not satisfy the
chance constraint. Risk allocation is able to find a solution that does
satisfy the chance constraint, in the vicinity of the fisked risk relaxation.
The solutions given by the fixed risk tightening and risk allocation in
the vicinity of the fisked risk tightening fail to find the path through the
corridor, even though one exists.

Programming approach was unable to find the optimal solution
in 2 × 103s of computation time. This demonstrates that
the customized solution approach is at least two orders of
magnitude more computationally efficient than solving the full
disjunctive convex program, and we show in Section XI-B that
the suboptimality introduced is very low in most cases.

B. Randomized map results

In this section we perform a statistical study over 500
randomly generated maps. The maps each contain 10 square
obstacles, with the center of each obstacle chosen from a
uniform random distribution over the space−5 ≤ y ≤ 5,
0 ≤ y ≤ 10. The side length for each obstacle was chosen
from a Gaussian random distribution with mean 1.5 and
standard deviation 0.5, and the orientation was chosen froma
uniform distribution between0◦ and 360◦. In order to avoid
generating trivially infeasible maps, any obstacles centered at
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Fig. 12. Estimated probability of failure against maximum allowable
probability of failure ∆. For comparison we show the line with unity gra-
dient that corresponds to zero conservatism. The chance constrained
plan is conservative by a factor of approximately 2.
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Fig. 13. Typical randomly generated map and path generated by cus-
tomized solution method. The dots show the mean of the planned UAV
position at each time step, and the ellipses give the 99% certainty region
for the position.

a distance of 2.5 or less away from the goal location or the
expected initial state of the UAV are removed and regenerated.
For all examples in this section,∆ = 0.001 and all other
parameters are as in Section XI-A. A typical map, along with
the solution returned by the chance constrained path planning
algorithm, is shown in Figure 13. Table I summarizes the
results from the randomized study. The suboptimality bound
ρ was computed as:

ρ ,
JUB − JLB

JUB

. (70)

When averaging this value across all cases, we removed
instances where the algorithm returned the trivial cost bounds
[−∞,∞]. Empirically we found that this happened in

only 2.3% of cases. The main result from Table I is that in
almost all cases, the algorithm returns nontrivial cost bounds,
and when it does, the returned solution is known to be
suboptimal by at most2.4% (averaged over all cases) and
by at most21.6% (3-sigma). We conclude that for this UAV
example, the customized solution approach returns a solution
very close to the global optimum to the full disjunctive convex
program posed in Problem 4.

Average cost 13.02
Standard deviation of cost 3.54

Fraction returning feasible solution 89.4%
Fraction returning nontrivial bounds 97.7%

Suboptimality bound (ρ) mean = 2.4%, s.d. = 6.4%
MILP solution time mean = 8.6s, s.d. = 11.8s

Convex program solution time mean = 10.26s, s.d. = 13.21

TABLE I. Summary of study over randomly generated maps. We use
s.d. to mean ”standard deviation”.

C. Comparison with Particle Control

In this section we compare the new approach with our
previous approach[33], which we refer to as ‘particle control’.
Figure 14 shows a typical solution generated by the particle
control approach for the hard map in Figure 8. For this case
we set∆ = 0.01, and used 100 particles. There are three
important differences between the approach introduced in the
present paper, and the particle control approach. First, the
approaches use two different strategies for handling the chance
constraint. The new approach bounds the chance constraint,
which guarantees that any solution satisfies the constraint, but
introduces conservatism. By contrast, particle control approx-
imates the chance constraint, by ensuring that the fractionof
particles violating the constraints is at most∆. As the number
of particles approaches infinity, the approximation becomes
exact. For a sufficiently large number of particles, this means
that, on average, the true probability of failure is close to∆.
Second, the new approach applies only to Gaussian distribu-
tions, while particle control applies to arbitrary distributions.
This generality comes, however, at the cost of computational
complexity. The particle control approach requires the solution
of a MILP that scales with the number of particles, and the
number of obstacles. Hence for large particle sets in nonconvex
regions, the approach becomes intractable. Finally, the particle
control approach is stochastic, in the sense that each time the
algorithm is run, it will generate a slightly different plan. The
new approach, by contrast, is deterministic.

For the hard map example, we generated 30 particle control
solutions, with 100 particles and with∆ = 0.01. CPLEX
was used to solve the resulting MILP, with a maximum
optimality gap of1%. The average solution time was 413s.
Using 106 Monte Carlo simulations, the average estimated
probability of failure was0.041, and the standard deviation
was0.025. This compares to the new approach, which solved
the same problem in 10.78s with an estimated probability
of failure of 0.0051. Note that, by increasing the number
of particles used, the probability of failure achieved using
particle control could be made to approach 0.01, but this would
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Fig. 14. Typical solution generated by particle control approach for the
hard map, with ∆ = 0.01. The black dots show the 100 particles used
in the plan. At most one particle can violate the constraints. The blue
ellipses show the 99% certainty region for the position.

further increase computation time. Hence the new approach
is significantly more computationally efficient than particle
control and ensures that the chance constraint is satisfied.

XII. C ONCLUSION

We have presented a new method for chance-constrained
path planning with obstacles. The method optimizes a cost
function, such as fuel, while ensuring that the probabilityof
collision is below a user-specified threshold. Using a new
bound on the probability of collision with the obstacles,
the method approximates the nonconvex chance-constrained
optimization problem as a Disjunctive Convex Program. This
can be solved to global optimality using branch-and-bound
techniques. We introduce a customized solution method that
improves computation speed, and returns hard bounds on the
level of suboptimality. We show empirically that, for a UAV
path planning problem, the level of suboptimality is very small
in almost all cases.
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APPENDIX

A. Branch and Bound for Full Disjunctive Convex Program

Branch and bound for the general disjunctive convex pro-
gram defined in Problem 2 works by exploring a search tree
such as the one depicted in Figure 15. Each node of the tree
corresponds to a convex subproblem, in which a subset of the
conjunctive constraint clauses are imposed, and for each ofthe
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c21(X) ≤ 0
∧
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c12(X) ≤ 0
"#$%!,!

c22(X) ≤ 0

c12(X) ≤ 0

Fig. 15. Example search tree for general disjunctive convex program.
In this case ndis = ncl = 2. Shown in the boxes are the inequality
constraints applied at that node. Nodes are expanded to their children
by branching on disjunctions and adding constraints to those imposed
at the parent node. The equality constraints (not shown) are applied at
all nodes.

imposed conjunctive clauses one of the disjunctive clausesis
imposed. The root node of the tree (Node 0) corresponds to the
subproblem where only the equality constraints are imposed:

Problem 8 (Root node subproblem).

min
X

h(X) subject tofeq(X) = 0. (71)

Nodes in the tree are expanded by adding constraints to the
subproblem. The main idea behind the branch and bound
approach is that the optimal solution for a node is a lower
bound on the cost of any subproblem below that node. Hence
any node with an optimal cost greater than or equal to the best
feasible solution found so far (the incumbent solution) need
not be expanded. The tree is explored as follows:

1) Initialize: Set J∗
inc = +∞ andX∗

inc = infeasibleand
solve the root node subproblem. Add the root node to
the stack.

2) Node selection:If the stack is empty, stop and return
X∗

inc. Otherwise select a nodei currently on the stack
and solve its corresponding subproblem to find its opti-
mal solutionX∗

i and optimal costJ∗
i . Remove the node

from the stack.
3) Check constraints:Check if the constraints in (10) are

satisfied byX∗
i . If so, go to Step 4. If not, go to Step 5.

4) Fathom check:Check ifJ∗
i ≤ J∗

inc. If so, setX∗
inc = X∗

i

and setJ∗
inc = J∗

i . Go to Step 2.
5) Node expansion:Choose one disjunction in (10) not

currently in subproblemi and add nodes to the tree for
each of the clauses in the disjunction. Each new node
adds the chosen clause to the conjunction of existing
clauses. Go to Step 2.

An example of a subproblem, in this case corresponding to
Node 5 in Figure 15, is:

Problem 9 (Node 5 subproblem).

min
X

h(X)

subject to:

feq(X) = 0
(

c12(X) ≤ 0
)

∧
(

c21(X) ≤ 0
)

. (72)
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Since (72) is a conjunction of convex constraints, Problem 9
is a convex program. This is true of all the subproblems
represented by nodes in the search tree. Since each subproblem
is convex and can be solved to global optimality in finite time,
and there are a finite number of possible subproblems that
can be added to the tree, the branch and bound process is
guaranteed to return the globally optimal solution to Problem 2
in finite time.

A great deal of research has been carried out that builds on
the basic branch and bound algorithm to improve efficiency.
Strategies include variable ordering, the use ofconflicts,
heuristics for node selection, and the addition of constraints
to remove parts of the search tree. We do not claim to review
this work here, but refer the interested reader to [44], [45],
[7], [51].

B. Disjunctive Convex Programming using Binary Variables

The general Disjunctive Convex Program in Problem 2 can
be encoded in an alternative form using binary variables. This
encoding has been particularly popular in the special case
of disjunctive linear programs, which become Mixed Integer
Linear Programs (MILP) in this encoding. The MILP encoding
allows the use of a great deal of performance-improving
results in the literature, as well as highly-optimized software
dedicated to solving MILPs[6]. We do not intend to review
this body of work here, but refer the interested reader to [7],
[52]. Instead we show how the encoding is carried out in the
case of a disjunctive convex program.

The following Mixed Integer Convex Program (MICP) is
equivalent to the Disjunctive Convex Program in Problem 2:

Problem 10 (Binary Variable Encoding).

min
X

h(X)

subject to:

feq(X) = 0

cij(X) ≤ M
(

1− zij

)

∀i, j (73)
ncl
∑

j=1

zij ≥ 1 ∀i (74)

zij ∈ {0, 1} ∀i, j, (75)

whereM is a large positive constant. The binary variables
in Problem 10 determine whether a particular constraint is
imposed or not, while (73) ensures that at least one constraint
in each disjunction is imposed, as required.
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