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This paper addresses the problem of attitude estimation in fractionated spacecraft clus-

ters. Each module in the cluster may have either a startracker, a relative attitude sensor, or

both. Using results in nonlinear observability theory, we provide graph-theoretic sufficient

conditions for the attitude of every module to be observable. In particular we show that

the attitude of every module in the cluster can be observed if every module has either a

star tracker with non-collinear stars, or there is a path through the sensing network from

a module with a star tracker to the module without a star tracker, and each of the relative

measurements along the path has either multiple non-collinear beacons or a single beacon

that is not parallel to the rotation vector of the target module.

I. Introduction

During the lifecycle of a space mission, a number of forms of uncertainty can affect the design and
operation of a spacecraft. Ref. 1 identifies six different types of uncertainty, which in some cases can comprise
both risks and opportunities. Technical uncertainty consists of events such as an in-flight component failure
or a software bug. Environmental uncertainty consists of impact with space objects, or radiation levels that
are beyond their expected values. Launch uncertainty causes risk due to the possibility of launch failure, but
presents opportunities in the form of the introduction of new launch vehicles. Demand uncertainty occurs
because the need for a particular spacecraft’s services may change dramatically after launch, for example
because of competing providers. Requirements uncertainty can cause requirements to change during a design
cycle. Finally, the funding stream for a given project is uncertain, since competing budget priorities can cause
the available funding level to fluctuate during its lifetime. In order to provide the best possible return on
investment, space missions should be responsive to uncertainty. A responsive space system can, for example,
continue to operate after component failures, respond quickly to unforeseen threats, and scale according to
the available funding.1

The vast majority of previous and current space missions were designed to achieve their goals using a
single, monolithic spacecraft. Ref. 1 argues that such spacecraft are highly unresponsive to uncertainty. For
example, conventional spacecraft design uses a high degree of redundancy to mitigate the effects of technical
uncertainty, however this can greatly increase the cost and complexity of a monolithic spacecraft. Funding
uncertainty can halt the development of the entire spacecraft before any services have been provided, while
demand and requirements uncertainty can mean that, even if launched successfully, the monolithic spacecraft
may not address the true needs of the customer.

Recent work proposed the concept of fractionated free-flying spacecraft.1 Instead of a single, monolithic
spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are con-
nected only through wireless communication links and, potentially, wireless power links. The key advantage
of this concept, as noted by Ref. 1, is the ability to respond to uncertainty. For example, if a single spacecraft
module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with
on-orbit servicing or replacement of the monolithic spacecraft.

In order to design a fractionated spacecraft system, a number of key questions need to be answered,
including the following:
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What are the capabilities of the fractionated spacecraft system, as a function of the capabilities of

the individual modules?

Answering this question is critical for two reasons. First, it enables pre-launch system-level design of the
fractionated spacecraft; if we can answer the above question, then we can perform trade studies between
different modules and between different designs within each module. Second, it enables the designer to
determine how the system will respond to uncertainty. For example, we can determine how significantly the
capabilities of the overall system will degrade if a particular sensor fails, or if a module is replaced with one
with different capabilities.

The navigation capabilities of the fractionated system are of particular importance. Ref. 1 notes that,
while the modules in the cluster may be allowed to drift relative to each other, knowledge of the relative
position and attitude of each spacecraft is essential to avoid collision and to ensure that communication
and power links are maintained. Ref. 1 notes that it is not necessary, however, for each module to have
the hardware necessary to determine its inertial position and attitude completely. Instead, the navigation
functionality can be fractionated, so that only one spacecraft knows its inertial position and attitude with
the others determining their position and attitude relative to the navigation module.

In this paper we focus our attention on the attitude estimation capabilities of the fractionated spacecraft
system. In particular, we consider the problem of determining the attitude of every module using all of
the hardware available to the fractionated system. This hardware includes star trackers, gyros, and relative
attitude sensors. Using concepts of nonlinear observability from Ref. 2, we present necessary conditions for
observability of the attitude of every module in the cluster. These conditions specify the minimum sensing
capabilities required for the attitude of every module to be determined by an estimation algorithm; this will
enable the derivation of practical estimators for fractionated attitude determination.

II. Related Work

The problem of control and estimation of spacecraft clusters has received a great deal of attention in
recent years. Much of this research focused on the formation control problem, where spacecraft move in
tightly coordinated formations, for example Refs. 3–9. See Ref. 10 for a review of control in spacecraft
formations. The problem of estimation for clusters of spacecraft, and other vehicles, was considered by a
number of authors, including Refs. 11–14. Much of this work deals with the estimation of relative position
and velocity using relative position measurements. Refs. 7, 12, 15–18 present practical estimators to solve
this problem, including experimental demonstrations with relative sensing carried out by differential Global
Positioning System signals.

In the present paper, by contrast, we are interested in attitude estimation. The extension of position
estimators to attitude estimators is not straightforward for two reasons. First, attitude kinematics and
observation models are nonlinear, whereas translational dynamics and observation models are linear (in deep
space) or can be linearized (if the relative separation is small). This means that the standard techniques
for linear systems, such as Kalman Filtering and linear observability theory, are not directly applicable.
Second, attitude is usually represented in spacecraft using the four-parameter quaternion, since all three-
parameter representations are singular or discontinuous for certain attitudes.19, 20 Attempting to estimate
the quaternion using a nonlinear Kalman Filter, however, leads to singularity in the covariance matrix; see
Ref. 21 for further discussion on this topic. Therefore, while the nonlinear Kalman filters of Refs. 12, 17, 18
have been effective for position and velocity estimation, extending these approaches to tackle the problem
of attitude estimation is not straightforward.

Analytic properties of vehicle formations with regard to observability and estimation were investigated
by a number of authors.11, 13, 14 Ref. 11 determined the closed-loop dynamics of the formation as a function
of the observed states. Refs. 13 and 14 formulate the sensing structure of the formation as a sensing graph

and provide graph-theoretic conditions for observability. These specify what properties the sensing graph
must have for the state of every spacecraft to be observable. These are important results, since without
observability we cannot hope to estimate the state; however they only apply to linear system dynamics and
linear measurements, which cannot model the nonlinear dependence of sensor measurements on attitude.

Early work in estimation of attitude for a single spacecraft using Kalman Filters is reviewed by Ref. 21,
and later developments are reviewed by Ref. 19. Attitude estimation for multiple spacecraft was considered by
Refs. 22–27. Ref. 24 uses tight relative attitude knowledge requirements in spacecraft formations to motivate
the derivation of an Unscented Kalman Filter for attitude estimation, but this estimator still determines only
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the attitude of a single spacecraft using its own sensors. Refs. 22,23 develop a Kalman Filter that uses relative

attitude measurements in order to estimate the relative attitude between two spacecraft. This work is based
on a recently-developed optical relative navigation sensor known as VISNAV; the sensor is described in more
detail in Ref. 28. Other optical sensors for relative attitude determination are described in Refs. 25–27.
In the present paper we extend the work of Ref. 23 by analyzing the problem of attitude estimation in an
arbitrary cluster of multiple spacecraft, with both relative sensors and star trackers, providing new, analytic
results on observability of the attitude kinematics.

III. Background

A. Quaternion Kinematics

In this section we review attitude kinematics, using quaternion notation to represent attitude. This review
follows the development in Ref. 29. Denote as A(q) the attitude matrix mapping a vector 0r in a reference
frame F

(0) to a vector 1r in another frame F
(1), such that:

1r = A(q)0r. (1)

The quaternion q ∈ ℜ4 is a convenient representation for attitude, and is defined by:

q ,

[

ρ

q4

]

, (2)

where ρ ∈ ℜ3 and q4 ∈ ℜ. For notational simplicity we define the following cross product matrix:

[a×] ,







0 −a3 a2

a3 0 −a1

−a2 a1 0






, (3)

where a is an arbitrary vector in ℜ3 and ai denotes the i’th element of a. The quaternion is related to the
attitude matrix by:

A(q) = ΞT (q)Ψ(q), (4)

where:

Ξ(q) ,

[

q4I3×3 + [ρ×]

−ρT

]

Ψ(q) ,

[

q4I3×3 − [ρ×]

−ρT

]

. (5)

Successive rotations between frames can be performed by quaternion multiplication, such that:

A(q(2))A(q(1)) = A(q(2) ⊗ q(1)), (6)

where ⊗ is the quaternion multiplication operator. The quaternion multiplication of q(1) and q(2) is given
by:

q(2) ⊗ q(1) , [Ψ(q(2)) q(2)]q(1) = [Ξ(q(1)) q(1)]q(2), (7)

while the inverse of a quaternion is given by:

q−1 ,

[

−ρ

q4

]

. (8)

Quaternion kinematics are given by:

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q, (9)
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where ω is the angular velocity of the frame F
(1) defined in frame F

(1). We define:

Ω(ω) ,

[

−[ω×] ω

−ωT 0

]

Γ(ω) ,

[

[ω×] ω

−ωT 0

]

. (10)

Define a difference quaternion ∆q between two quaternions q(1) and q(2) as:

∆q , q(2) ⊗ q(1)−1 =

[

∆ρ

∆q4

]

, (11)

where q(1) rotates frame F
(0) to frame F

(1) and q(2) rotates frame F
(0) to frame F

(2). Then the kinematics
of the difference quaternion can be shown to be:23

∆q̇ = −

[

[ω(1)×]∆ρ

0

]

+
1

2

[

(ω(2) − ω(1))

0

]

⊗ ∆q, (12)

where ω(1) is the angular velocity of F
(1) expressed in frame F

(1) and ω(2) is the angular velocity of F
(2)

expressed in frame F
(2).

B. Definition of Fractionated Spacecraft Cluster

In this section we define a fractionated spacecraft cluster for the purposes of fractionated attitude estimation.
A fractionated cluster F consists of N spacecraft modules denoted S(1) through S(N). The cluster has a
reference coordinate frame, denoted F

(0), which has its origin at Ix0 in the inertial frame. We use ir to
denote an arbitrary vector r expressed in frame F

(i), and use Ir to denote a vector in the inertial frame. The
reference coordinate frame is defined relative to the inertial frame such that for an arbitrary vector r:

Ir = Ix0 +A(q−1
0 )0r. (13)

Each module definition S(i) consists of the following parameters:

• Body-fixed coordinate frame, denoted F
(i).

• Module orbit, denoted O(i), consisting of the position 0p(i)(t) and velocity 0v(i)(t) of the origin of F
(i)

in the frame F
(0).

• Module angular velocity, denoted iω(i), expressed in the body-fixed frame F
(i).

• Star tracker set T (i).

• Relative sensor set R(i).

The star tracker set T (i) consists of nT (i) members, each defining a star tracker. The relative sensor set
consists of nR(i) relative sensors, each member defining the target module, and the locations of the target
beacons in the body frame of the target module. The quaternion for the attitude of module i is denoted
q(i). The quaternion kinematics of module i are independent of the kinematics of the other modules, and
are given by:

q̇(i) =
1

2
Ω(iω(i))q(i). (14)

Given a fractioned cluster F we define the sensing network N (F) as a directed graph where node i represents
module i, and an arc from node i to node j means that there is a relative sensor on i that has a beacon on
module j as its target. A startracker node represents a module with one or more star trackers.

Definition 1. A path from node i to node j exists if, starting with node i, it is possible to traverse arcs in
the direction of the arc until node j is reached.

The graph representation of a fractioned cluster is illustrated in Figure 1.
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Figure 1. Directed graph representations of two different fractionated sensing networks. Arcs represent relative attitude sensing, while
double circles represent modules with star trackers. In a) a path exists from node 1 to node 7, but not from node 7 to node 1. In b)
no path exists from node 1 to node 7.

C. Star Tracker Sensor Model

In this paper we use the star tracker model of Ref. 29. For notational convenience we assume that each star
tracker in the cluster is given a unique identifying integer from 1 to nT , where nT ,

∑N

i=0 nT (i) is the total
number of star trackers in the cluster. Star tracker i is on module li and makes observations of nb,i stars.
The origin of star-tracker i’s body-fixed coordinate frame is at lia(i) in frame F

(li). To simplify notation
we assume that the star tracker frame is aligned with the body frame F

(li) of module li, without loss of
generality. This is possible because the rotation between the body frame of a module and a star tracker on
that module is fixed in the frame of the module and known. Using 0si,j to denote the unit vector pointing
in the reference frame from the origin of star tracker frame i to star j, the star tracker model is:

bi,j = A(q(li))0si,j , (15)

where A(q(li)) is the matrix describing the rotation from the reference frame to the body frame of module
li. The star tracker is illustrated in Figure 2.

Narrow 

angle 

lens 

Star 

tracker 
frame 

Image 
plane 

Inertial 
frame 

Star 1 

Star 2 

Star 3 

Module 1 

I
s1,1 

Module 1 

body frame 

1
a
(1)
 

Figure 2. Star tracker model. The unit vector in the reference frame from the star tracker frame to star 1 is denoted 0
s1, and is

known from star tables. The star tracker uses a visual sensor to observe the location of the star’s image on the image plane.

D. Relative Sensor Model

In this paper we consider relative sensors that detect a target point, which we refer to as a beacon, on
a target module, and give either bearing, or range-and-bearing measurements. Sensors that give bearing
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measurements only include the optical VISNAV sensor of Ref. 23. This sensor detects optical beacons on
a target module and determines their location in the image plane. Sensors that give range-and-bearing
measurements include LIDAR sensors, see for example Ref. 30 and the references therein. The beacons have
known locations in the frame of the target module. Each relative sensor in the cluster is given a unique
identifying integer from 1 to nR, where nR ,

∑N
i=0 nR(i) is the total number of relative sensors in the cluster.

The origin of relative sensor i’s body-fixed coordinate frame is at liz(i) in frame F
(li). To simplify notation

we assume that the relative sensor frame is aligned with the body frame F
(li) of module li, without loss of

generality. This is possible because the rotation between the body frame of a module and relative sensor
frame on that module is fixed in the frame of the module and known. Each relative sensor i is on module
ui and makes observations of a single beacon on module vi. This beacon is fixed at viwi in the body frame
F

(vi) of the target module vi, and we assume that ‖viwi‖ > 0. We assume that each sensor has a single
beacon to simplify notation, without loss of generality. We use liri to denote the vector between the relative
sensor and its beacon in the frame F

(li). The relative sensor observation for sensor i is denoted ci. For a
range-and-bearing measurement:

ci = liri, (16)

while for a bearing-only measurement:

ci =
liri

‖liri‖
. (17)

The relative sensor model is illustrated in Figure 3.
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Figure 3. Relative sensor model. Shown is an optical system that gives bearing information only.

IV. Observability in Fractionated Attitude Estimation

In this section we consider the observability of the cluster attitude state. The cluster attitude state
consists of the quaternion for each spacecraft, and is defined by:

x ,









q(1)

...

q(N)









. (18)

The attitude state for the system Γ(N ) is in the state space S(N ):

S(N ) , QN , (19)
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where Q is the space of valid quaternions:

Q , {x|x ∈ ℜ4, ||x|| = 1}. (20)

We assume that the angular rate of each spacecraft is known and constant in the spacecraft body-fixed
frame. The angular rate can be measured using gyro sensors. While such measurements are subject to gyro
bias and noise, estimation of these parameters along with the spacecraft attitude is beyond the scope of this
paper. We assume that all relative sensors give range-and-bearing measurements. We now define what is
meant by observability in a nonlinear dynamic system.

A. Observability in General Nonlinear Systems

Consider the general nonlinear system, denoted Σ:

ẋ = f(x,u)

y = g(x), (21)

where u ∈ Ω ⊂ ℜk, x ∈ M ⊂ ℜn and y ∈ ℜm. Assume that for every bounded measurable input u(t) and
every x0 ∈ M there exists a unique solution to ẋ = f(x(t),u(t)) such that x(0) = x0 and x(t) ∈ M for all
t ∈ ℜ. The following definitions are due to Ref. 2:

Definition 2. A pair of points ξA and ξB are called U-distinguishable if there exists a measurable bounded
input u(t) defined on the interval [0, T ] that generates solutions xA(t) and xB(t) of ẋ = f(x,u) satisfying
xA(0) = ξA and xB(0) = ξB such that xA(t) ∈ U and xB(t) ∈ U for all t ∈ [0, T ] and g(xA(t)) 6= g(xB(t))
for some t ∈ [0, T ]. We use I(xA, U) to denote all points xB ∈ U that are not U-distinguishable from xA.

Definition 3. The system Σ is observable at x ∈M if I(x,M) = x.

Intuitively, this means that a system is observable at x ∈ M if for every other initial condition in M the
observed time sequence is different somewhere on the interval [0, T ]. Conversely, the system cannot be
observable if there exists any other initial condition in M such that the observed time sequence is the same
everywhere on the interval [0, T ]. In the next sections we use this definition of observability to derive results
relating to attitude estimation in fractionated spacecraft systems.

B. Sufficient Conditions for Observability with One Module

In this section, we consider the problem of attitude estimation with one module, which has a single star
tracker. Then the cluster attitude state is simply:

x ,

[

q(1)
]

. (22)

and the attitude kinematics are given by:

ẋ =
[

q̇(1)
]

= f(x,u) = f(x) =
[

1
2Ω(1ω(1))q(1)

]

. (23)

The observations can be written in the form of (21) as follows:

y = g(x) =









A(q(1))0s1,1

...

A(q(1))0s1,nT









. (24)

Using the definition of nonlinear observability given in Definition 3, we know prove the well-known result
that two non-collinear 0s1,i are sufficent to ensure observability of the nonlinear dynamic system described
by (23) and (24).

Lemma 1. If any pair of star vectors 0s1,i and 0s1,j has 0s1,i ×
0s1,j 6= 0, then the system described by (23)

and (24) is observable at any x ∈ S(N ).
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Proof: To show observability, it suffices to show that g(xA(0)) = g(xB(0)) implies that xA(0) = xB(0), for
any xA(0) ∈ S(N ). Let us pick i and j such that the star vectors 0s1,i and 0s1,j have 0s1,i × 0s1,j 6= 0.

The condition g(xA(0)) = g(xB(0)) implies that A(q
(1)
A (0))0s1,i = A(q

(1)
B (0))0s1,i and A(q

(1)
A (0))0s1,j =

A(q
(1)
B (0))0s1,j. Since A(q

(1)
B (0)) has a unique inverse given by A(q

(1)−1
B (0)), this implies that:

A
(

q
(1)−1
B (0))A(q

(1)
A (0)

)

0s1,i = 0s1,i =⇒ A
(

∆q(0)
)

0s1,i = 0s1,i

A
(

q
(1)−1
B (0))A(q

(1)
A (0)

)

0s1,j = 0s1,j =⇒ A
(

∆q(0)
)

0s1,j = 0s1,j , (25)

where ∆q , q
(1)−1
B (0) ⊗ q

(1)
A (0), and where we define:

∆q =

[

∆ρ

∆q4

]

. (26)

Equation (25) implies that the star vectors 0s1,i and 0s1,i must each be an eigenvector of the rotation matrix
A

(

∆q
)

with eigenvalue unity. This is the case if ∆ρ = 0, in which case A
(

∆q
)

is the identity matrix. If
∆ρ 6= 0 then ∆ρ must be parallel to both 0s1,i and 0s1,j since non-identity rotation matrices have exactly
one eigenvector with eigenvalue unity, corresponding to the Euler axis of the rotation. However, since
0s1,i × 0s1,j 6= 0 with ‖0s1,i‖ > 0 and ‖0s1,i‖ > 0, this is not possible. Hence ∆ρ = 0, which implies that
xA(0) = xB(0). From Definition 2 with U = S(N ), this means that I(x,S(N )) = x. Hence from Definition 3
the system described by (23) and (24) is observable at any x ∈ S(N ). �

C. Necessary and Sufficient Conditions for Observability with Two Modules

In this section, we consider the problem of attitude estimation with two modules, i.e. N = 2. Then the
cluster attitude state is:

x ,

[

q(1)

q(2)

]

. (27)

We can write the cluster dynamics in the form of (21) as follows:

ẋ =

[

q̇(1)

q̇(2)

]

= f(x,u) = f(x) =

[

1
2Ω(1ω(1))q(1)

1
2Ω(2ω(2))q(2)

]

. (28)

First, consider the case where there is a star tracker on module 1 and a number of relative sensors on
module 1 giving range-and-bearing measurements between the sensor and beacons on module 2. Then the
observations can be written in the form of (21) as follows:

y = g(x) =























A(q(1))0s1,1

...

A(q(1))0s1,nT

1r1

...
1rnR























. (29)

We now give some analytic results relating to the observability of the system defined by (28) and (29). First,
note that the observation uiri from the relative sensor on module ui making measurements of a beacon on
module vi can be rewritten as:

uiri =A(q(ui))0ri (30)

=A(q(ui))
(

0pvi
+A(q(vi)−1)viwi −

0pui
−A(q(ui)−1)uizi

)

(31)

=A(q(ui))(0pvi
− 0pui

) +A(q(ui))A(q(vi)−1)2wi −
uizi (32)
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Lemma 2. If any pair of star vectors (i, j) has 0s1,i × 0s1,j 6= 0 and any pair of relative sensors (k, l) has
2wk × 2wl 6= 0 then the system defined by (28) and (29) is observable at any x ∈ S(N ).

Proof: Again, to show observability, it suffices to show that g(xA(0)) = g(xB(0)) implies that xA(0) =
xB(0), for any xA(0) ∈ S(N ). Define:

xA(t) =

[

q
(1)
A (t)

q
(2)
A (t)

]

xB(t) =

[

q
(1)
B (t)

q
(2)
B (t)

]

. (33)

The equality g(xA(0)) = g(xB(0)) implies that A(q
(1)
A (0))0s1,i = A(q

(1)
B (0))0s1,i for all i, and following the

proof of Lemma 1, since we have two star vectors with 0s1,i × 0s1,j 6= 0 this implies that q
(1)
A (0) = q

(1)
B (0).

Looking now at the relative sensor measurements, g(xA(0)) = g(xB(0)) implies that:

A(q
(1)
A (0))(0p2 −

0p1) +A(q
(1)
A (0))A(q

(2)−1
A (0))2wi

= A(q
(1)
B (0))(0p2 −

0p1) +A(q
(1)
B (0))A(q

(2)−1
B (0))2wi ∀i, (34)

and since q
(1)
A (0) = q

(1)
B (0), this implies that:

A(q
(2)−1
A (0))2wi = A(q

(2)−1
B (0))2wi ⇐⇒ A(∆q(2))2wi = 2wi ∀i, (35)

where ∆q(2) , q
(2)
B (0) ⊗ q

(2)−1
A (0) and where we have used the fact that attitude matrices have unique

inverses. We define:

∆q(2) =

[

∆ρ(2)

∆q
(2)
4

]

. (36)

As with the proof of Lemma 1, this implies that either ∆ρ(2) = 0 or ∆ρ(2) is parallel to wi for all i. However
since there exists a pair of relative sensors (k, l) such that 2wk × 2wl 6= 0, and since both ‖2wk‖ > 0 and

‖2wl‖ > 0, we know that ∆ρ(2) is not parallel to wi for all i. Hence ∆ρ(2) = 0, and so q
(2)
A (0) = q

(2)
B (0)

and qA(0) = qB(0). From Definition 2 with U = S(N ), this means that I(x,S(N )) = x. Hence from
Definition 3 the system described by (28) and (29) is observable at any x ∈ S(N ). �

Lemma 2 provides a theoretical proof of the intuitive result, that if one module has a star tracker with
non-collinear stars and there is a relative sensor between the modules with non-collinear beacons, then the
attitude of both modules can be determined. Now consider the case where there is a star tracker on module 1,
but that there is a single relative sensor give range and bearing measurements to a single beacon on module
2. We will show that even in this case the attitude of both modules can be determined. The observations
are:

y = g(x) =













A(q(1))0s1,1

...

A(q(1))0s1,nT

1r1













. (37)

Lemma 3 gives necessary and sufficient conditions for the system described by (28) and (37) to be observable.

Lemma 3. Assume that there exists a pair of star vectors (i, j) such that 0s1,i ×
0s1,j 6= 0. Then at any

x ∈ S(N ) the system described by (28) and (37) is observable if and only if 2ω(2) × 2w1 6= 0.

Proof: We first prove the ‘only if’ part of the lemma, that is, we show that the system is not observable if
2ω(2) × 2w1 = 0. To do so it suffices to show that for any initial state xA(0) ∈ S(N ) there exists another
initial state xA(0) 6= xB(0) such that g(xA(t)) = g(xB(t)) ∀t ≥ 0. Define:

xA(t) =

[

q
(1)
A (t)

q
(2)
A (t)

]

xB(t) =

[

q
(1)
B (t)

q
(2)
B (t)

]

. (38)
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and let q
(1)
B (0) = q

(1)
A (0) and q

(2)
B (0) = ∆q(2) ⊗ q

(2)
A (0), where ∆q(2) is as defined in (36). If we now choose

∆ρ(2)(0) to be nonzero with ∆ρ(2)(0) × 2w1 = 0, using the difference kinematics (12) we have:

∆q̇(2)(0) = −

[

[2ω(2)×]∆ρ(2)(0)

0

]

= 0

=⇒∆q̇(2)(t) = 0 ∀t

=⇒∆ρ(2)(t) × 2w1 = 0 ∀t (39)

where we have used the fact that 2ω(2) × 2w1 = 0. The relative sensor measurement with initial state xA(0)
is given by:

1r1(xA(t)) = A(q
(1)
A (t))(0p2 −

0p1) +A(q
(1)
A (t))A(q

(2)−1
A (t))2w1 −

1z1, (40)

while the relative sensor measurement with initial state xB(0) is given by:

1r1(xB(t)) = A(q
(1)
B (t))(0p2 −

0p1) +A(q
(1)
B (t))A(q

(2)−1
B (t))2w1 −

1z1

= A(q
(1)
A (t))(0p2 −

0p1) +A(q
(1)
A (t))A(q

(2)−1
B (t))2w1 −

1z1

= A(q
(1)
A (t))(0p2 −

0p1) +A(q
(1)
A (t))A(q

(2)−1
A (t))A(∆q(2)−1(t))2w1 −

1z1. (41)

Since ∆ρ(2)(t) × 2w1 = 0 with ‖∆ρ(2)(t)‖ > 0 and ‖2w1‖ > 0 we know that 2w1 is the Euler axis of the
rotation described by A(∆q(2)−1), and hence A(∆q(2)−1(t))2w1 = 2w1. Hence:

1r1(xB(t)) = A(q
(1)
A (t))(0p2 −

0p1) +A(q
(1)
A (t))A(q

(2)−1
A (t))2w1 −

1z1 = 1r1(xA(t)) ∀t. (42)

For all time, therefore, the relative measurements are the same for xB(t) as for xA(t). The star tracker
measurements are the same since they depend only on q(1), which is identical in xB(t) and xA(t). Hence
g(xA(t)) = g(xB(t)) ∀t ≥ 0. Referring to Definition 2 and setting M = U = S(N ), we see that this means
that for any xA(0) there exists an xB(0) 6= xA(0) and xB(0) ∈ I(xA(0), U). Hence, from Definition 3, the
system defined by (28) and (37) is not observable at any x ∈ S(N )

We now prove the ‘if’ part of the lemma, that is, we show that the system is observable if 2ω(2)×2w1 6= 0.
It suffices to show that g(xA(t)) = g(xB(t)) ∀t ≥ 0 implies that xA(0) = xB(0), for any xA(0) ∈ S(N ).

The equality g(xA(0)) = g(xB(0)) implies that A(q
(1)
A (0))0s1,i = A(q

(1)
B (0))0s1,i for all i, and following the

proof of Lemma 1, since we have two star vectors with 0s1,i × 0s1,j 6= 0 this implies that q
(1)
A (0) = q

(1)
B (0).

Looking now at the relative sensor measurement, g(xA(t)) = g(xB(t)) implies that:

A(q
(1)
A (t))(0p2 −

0p1) +A(q
(1)
A (t))A(q

(2)−1
A (t))2w1

= A(q
(1)
B (t))(0p2 −

0p1) +A(q
(1)
B (t))A(q

(2)−1
B (t))2w1, ∀t ≥ 0 (43)

and since q
(1)
A (t) = q

(1)
B (t), this implies that:

A(q
(2)−1
A (t))2w1 = A(q

(2)−1
B (t))2w1 ⇐⇒ A(∆q(2)(t))2w1 = 2w1, (44)

where ∆q(2)(t) , q
(2)
B (t) ⊗ q

(2)−1
A (t) and where we have used the fact that attitude matrices have unique

inverses. This implies that either ∆ρ(2)(t) = 0 or ∆ρ(2)(t) is parallel to 2w1 for all t ≥ 0. We now show
that ∆ρ(2)(t) being parallel to 2w1 for all t ≥ 0 is not possible. The proof is by contradiction. Assume that
∆ρ(2)(t) 6= 0 and ∆ρ(2)(t) is parallel to 2w1 for all t ≥ 0. This implies that ∆ρ(2)(0) is parallel to 2w1, i.e.
∆ρ(2)(0) × 2w1 = 0. Using Lemma 4 in the appendix, we can show that the state transition equation for
∆ρ(2)(t) is given by:

∆ρ(2)(t) =

∆ρ(2)(0) −
sin(‖2ω(2)‖t)

‖2ω(2)‖

(

2ω(2) × ∆ρ(2)(0)
)

+
2 sin2

(

1
2‖

2ω(2)‖t
)

‖2ω(2)‖2

(

2ω(2) × (2ω(2) × ∆ρ(2)(0))
)

, (45)
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where we have used the fact that the angular rates of q
(2)
A and q

(2)
B are the same when expressed in their

respective frames. Since ∆ρ(2)(0) is nonzero and parallel to 2w1, and since 2ω(2) × 2w1 6= 0, we know that
2ω(2) × ∆ρ(2)(0) 6= 0. We also know that ‖2ω(2)‖ > 0. From Lemma 5 in the appendix, this means that
there exists a time t such that ∆ρ(2)(t) is not parallel to ∆ρ(2)(0), and is hence not parallel to 2w1, which is
a contradiction. Hence ∆ρ(2)(t) = 0 ∀t ≥ 0 and so g(xA(t)) = g(xB(t)) ∀t ≥ 0 implies that xA(0) = xB(0).
From Definition 2 with T = 0 and U = S(N ), this means that I(x,S(N )) = x. Hence from Definition 3 the
system described by (28) and (37) is observable at any x ∈ S(N ). �

Lemma 3 shows that, if one module has a star tracker with non-collinear stars, then the attitude of both
modules can be observed using a single beacon if and only if the module with the beacon rotates and the
rotation vector is not parallel to the vector to the beacon.

D. Sufficient Conditions for Observability in Fractionated Attitude Estimation

In this section we consider an arbitrary cluster of N modules with both star trackers and relative sensors.
Then the cluster attitude state is:

x ,









q(1)

...

q(N)









. (46)

We can write the cluster dynamics in the form of (21) as follows:

ẋ =









q̇(1)

...

q̇(N)









= f(x,u) = f(x) =









1
2Ω(1ω(1))q(1)

...
1
2Ω(2ω(2))q(N)









. (47)

The observations are given by:

g(x) =























A(q(l1))0s1,1

...

A(q(lnT
))0snT ,nb,nT

l1r1

...
lnRrnR























. (48)

Condition 1. A node satisfies Condition 1 if it is a star tracker node where the corresponding star tracker
has a pair of star vectors 0s1,i and 0s1,j such that 0s1,i ×

0s1,j 6= 0.

Condition 2. A sensing arc between node i and node j satisfies Condition 2 if at least one of the following
holds:

1. There are two or more relative sensors (k, l) on the arc with jwk × jwl 6= 0.

2. There is at least one relative sensor k on the arc with jω(j) × jwk 6= 0

Theorem 1. If for every node i in the fractionated cluster F that does not satisfy Condition 1, there exists
a path through the sensing graph from a node satisfying Condition 1 to node i, where each arc satisfies
Condition 2, then the system described by (47) and (48) is observable.

Proof: To show observability, it suffices to show that g(xA(t)) = g(xB(t)) ∀t implies that xA(0) = xB(0),
for any xA(0) ∈ S(N ). Define:

xA(t) =









q
(1)
A (t)

...

q
(N)
A (t)









xB(t) =









q
(1)
B (t)

...

q
(N)
B (t)









. (49)
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Then, to show that g(xA(t)) = g(xB(t)) implies that xA(0) = xB(0), it suffices to show that g(xA(t)) =

g(xB(t)) implies that q
(i)
A (0) = q

(i)
B (0) for all i. From Lemma 1 this is true for all i where node i satisfies

Condition 1.
We now consider the case where module i does not have such a star tracker. From the assumptions of the

present theorem, there exists a path from a node satisfying Condition 1 to module i, where each arc satisfies
Condition 2. Let this path have length L and define pj as the node number at location j along the path,
such that pL = i and p1 is a node satisfying Condition 1. We know show that g(xA(0)) = g(xB(0)) implies

that q
(pj)
A (0) = q

(pj)
B (0) for j = 1, . . . , L. The proof is by induction. Since node p1 satisfies Condition 1,

from Lemma 1 we know that g(xA(t)) = g(xB(t)) implies that q
(p1)
A (0) = x

(p1)
B (0). Now assume that

g(xA(t)) = g(xB(t)) ∀t implies that q
(pk)
A (0) = q

(pk)
B (0) for any node pk in the path. We now show that

g(xA(t)) = g(xB(t)) ∀t and q
(pk)
A (0) = q

(pk)
B (0) implies that q

(pk+1)
A (0) = q

(pk+1)
B (0). Since there is a sensing

arc between node pk and pk+1 there is one or more relative sensor on module pk taking measurements of
beacons on module pk+1. Looking at the measurement from these sensors, g(xA(t)) = g(xB(t)) ∀t implies
that:

A(q
(pk)
A (t))(0p2 −

0p1) +A(q
(pk)
A (t))A(q

(pk+1)−1
A (t))viwi

= A(q
(pk)
B (t))(0p2 −

0p1) +A(q
(pk)
B (t))A(q

(pk+1)−1
B (t))viwi ∀t ∀i s.t. ui = pk and vi = pk+1, (50)

and since we have assumed that q
(pk)
A (t) = q

(pk)
B (t), this implies that:

A(∆q(pk+1)(t))viwi = viwi ∀t, ∀i s.t. ui = pk and vi = pk+1, (51)

where ∆q(pk+1)(t) , q
(pk+1)
B (t) ⊗ q

(pk+1)−1
A (t). We define:

∆q(pk+1)(t) =

[

∆ρ(pk+1)(t)

∆q
(pk+1)
4 (t)

]

. (52)

As with the proof of Lemmas 2 and 3, (44) implies that either ∆ρ(pk+1)(t) = 0 or ∆ρ(pk+1)(t) is parallel
to viwi for all i and for all t ≥ 0. However since the relative sensor satisfies Condition 2, the latter is not

possible. Hence ∆ρ(pk+1)(0) = 0, and so q
(pk+1)
A (0) = q

(pk+1)
B (0). Then, by induction, g(xA(0)) = g(xB(0))

implies that q
(pj)
A (0) = q

(pj)
B (0) for j = 1, . . . , L and since pL = i this means that g(xA(0)) = g(xB(0))

implies that q
(i)
A (0) = q

(i)
B (0) for all i. Hence g(xA(0)) = g(xB(0)) implies that xA(0) = xB(0) for any

xA(0) ∈ S(N ). From Definition 2 with T = 0 and U = S(N ), this means that I(x,S(N )) = x. Hence from
Definition 3 the system described by (47) and (48) is observable at any x ∈ S(N ). �

Theorem 1 shows that the attitude of every module in the cluster can be observed if every module has either
a star tracker with non-collinear stars, or there is a path through the sensing network from a module with
a star tracker to the module without a star tracker, and each of the relative measurements along the path
has either multiple non-collinear beacons or a single beacon that is not parallel to the rotation vector of the
target module.

V. Conclusion

In this paper we have presented sufficient conditions for observability of the attitude of a fractioned
spacecraft system. We have shown that the attitude of every module in the cluster can be observed if every
module has either a star tracker with non-collinear stars, or there is a path through the sensing network from a
module with a star tracker to the module without a star tracker, and each of the relative measurements along
the path has either multiple non-collinear beacons or a single beacon that is not parallel to the rotation vector
of the target module. Our ongoing work uses the observability results presented here to develop practical
nonlinear estimation techniques and to determine empirically how the attitude estimation capabilities of the
fractionated system depend on the capabilities of the individual modules.
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VII. Appendix

Lemma 4. Consider two quaternions q1 and q2 defining rotations between a reference frame F
(0) and frames

F
(1) and F

(2) respectively. Frame F
(1) has rotation rate 1ω1 and frame F

(2) has rotation rate 2ω2. Define the
difference quaternion as ∆q = q2 ⊗ q−1

1 . Further define ∆ρ and ∆q4 such that:

∆q =

[

∆ρ

∆q4

]

. (53)

Then if 1ω1 = 2ω2 = ω, the state transition function for ∆ρ is given by:

∆ρ(t) = ∆ρ(0) −
sin(‖ω‖t)

‖ω‖

(

ω × ∆ρ(0)
)

+
2 sin2

(

1
2‖ω‖t

)

‖ω‖2

(

ω × (ω × ∆ρ(0))
)

. (54)

Proof: Ref. 23 shows that, for constant 1ω1 and 2ω2, the state transition matrix for the difference quaternion
∆q is given by:

∆q(t) = Ω̄(2ω2)Γ̄(1ω1)∆q(0), (55)

where:

Ω̄(2ω2) ,





cos
(

1
2‖

2ω2‖t
)

I3 − [ψ(t)×] ψ(t)

−ψT (t) cos
(

1
2‖

2ω2‖t
)



 (56)

Γ̄(1ω1) ,





cos
(

1
2‖

1ω1‖t
)

I3 − [ζ(t)×] −ζ(t)

ζT (t) cos
(

1
2‖

1ω1‖t
)



 (57)

and:

ψ(t) ,
sin

(

1
2‖

2ω2‖t
)

2ω2

‖2ω2‖
(58)

ζ(t) ,
sin

(

1
2‖

1ω1‖t
)

1ω1

‖1ω1‖
. (59)

We can write:

∆q(t) =

[

A B

C D

]

∆q(0), (60)

where:

[

A B

C D

]

=





cos
(

1
2‖ω‖t

)

I3 − [ψ(t)×] ψ(t)

−ψT (t) cos
(

1
2‖ω‖t

)









cos
(

1
2‖ω‖t

)

I3 − [ζ(t)×] −ζ(t)

ζT (t) cos
(

1
2‖ω‖t

)



 . (61)

Using the fact that 1ω1 = 2ω2 = ω and multiplying out the matrices to find B, we get:

B = − ζ(t) cos
(1

2
‖ω‖t

)

+ [ψ(t)×]ζ(t) + ψ(t) cos
(1

2
‖ω‖t

)

(62)

= − ψ(t) cos
(1

2
‖ω‖t

)

+ [ψ(t)×]ψ(t) + ψ(t) cos
(1

2
‖ω‖t

)

= 0. (63)
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Since B = 0, we can write ∆ρ(t) = A∆ρ(0), and multiplying to find A it can be shown that:

A = cos2
(1

2
‖ω‖t

)

I3 − 2[ψ(t)×] cos
(1

2
‖ω‖t

)

+ [ψ(t)×][ψ(t)×] + ψ(t)ψ(t)T

= I3 −
sin(‖ω‖t)

‖ω‖
[ω×] +

2 sin2(1
2‖ω‖t)

‖ω‖2
[ω×][ω×], (64)

where we have used the identity aaT ≡ ‖a‖2I3 + [a×][a×] for a vector a ∈ ℜ3. Substituting (64) into
∆ρ(t) = A∆ρ(0) we obtain:

∆ρ(t) = ∆ρ(0) −
sin(‖ω‖t)

‖ω‖

(

ω × ∆ρ(0)
)

+
2 sin2

(

1
2‖ω‖t

)

‖ω‖2

(

ω × (ω × ∆ρ(0))
)

. (65)

�

Lemma 5. Let:

∆ρ(t) = ∆ρ(0) −
sin(‖ω‖t)

‖ω‖

(

ω × ∆ρ(0)
)

+
2 sin2

(

1
2‖ω‖t

)

‖ω‖2

(

ω × (ω × ∆ρ(0))
)

. (66)

If ∆ρ(0) 6= 0, ω is not parallel to ∆ρ(0) and ω 6= 0, then there exists a time t ≥ 0 such that ∆ρ(t) is not
parallel to ∆ρ(0).

Proof: Define:

u , ω × ∆ρ(0) v , ω × (ω × ∆ρ(0))

w , −
sin(‖ω‖t)

‖ω‖
u +

2 sin2
(

1
2‖ω‖t

)

‖ω‖2
v (67)

Then ∆ρ(t) is parallel to ∆ρ(0) only if w is zero or w is parallel to ∆ρ(0). Since ω × ∆ρ(0) 6= 0 we know
that u 6= 0, and since u and v are not parallel, we know that w 6= 0 for all t such that 0 < t < π

‖ω‖ . We now

show that there exists a t such that w is not parallel to ∆ρ(0). Let us first assume that there exists a time
t∗ such that w is parallel to ∆ρ(0), that is:

k∆ρ(0) = −
sin(‖ω‖t∗)

‖ω‖
u +

2 sin2
(

1
2‖ω‖t

∗
)

‖ω‖2
v, (68)

where k is a nonzero scalar. Rewriting (68) we obtain:

k∆ρ(0) =au + bv (69)

a = −
sin(‖ω‖t∗)

‖ω‖
b =

2 sin2
(

1
2‖ω‖t

∗
)

‖ω‖2
. (70)

From the definition of u we know that the vectors u and ∆ρ(0) are not parallel, and we also know that u

and v are not parallel. If v is parallel to ∆ρ(0) then ∆ρ(t) is not parallel to ∆ρ(0) for all 0 < t < π
‖ω‖ since

∆ρ(t) is the sum of two vectors parallel to ∆ρ(0) and one non-zero vector not parallel to ∆ρ(0). If v is not
parallel to ∆ρ(0) then the matrix formed by the vectors u, v and ∆ρ(0) is invertible, meaning that (68) has
at most one solution for (a, b, k) and hence (68) has at most one solution for t∗ on 0 < t < π

2‖ω‖ . Hence any

t such that 0 < t < π
2‖ω‖ and t 6= t∗ does not satisfy (68), from which we conclude that there exists a t such

that w is not parallel to ∆ρ(0). Since w 6= 0 for all t such that 0 < t < π
‖ω‖ , this means there exists a t such

that ∆ρ(t) is not parallel to ∆ρ(0). �
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