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Autonomous vehicles need to be able to plan trajectories to a specified goal that avoid
obstacles, and are robust to the inherent uncertainty in the problem. This uncertainty
arises due to uncertain state estimation, disturbances and modeling errors. Previous so-
lutions to the robust path planning problem solved this problem using a finite horizon
optimal stochastic control approach. This approach finds the optimal path subject to
chance constraints, which ensure that the probability of collision with obstacles is below
a given threshold. This approach is limited to problems where all uncertain distributions
are Gaussian, and typically result in highly conservative plans. In many cases, however,
the Gaussian assumption is invalid; for example in the case of localization, the belief state
about a vehicle’s position can consist of highly non-Gaussian, even multimodal, distribu-
tions. In this paper we present a novel method for finite horizon stochastic control of
dynamic systems subject to chance constraints. The method approximates the distribu-
tion of the system state using a finite number of particles. By expressing these particles
in terms of the control variables, we are able to approximate the original stochastic con-
trol problem as a deterministic one; furthermore the approximation becomes exact as the
number of particles tends to infinity. For a general class of chance constrained problems
with linear system dynamics, we show that the approximate problem can be solved using
efficient Mixed-Integer Linear Programming techniques. We apply the new method to air-
craft control in turbulence, and show simulation results that demonstrate the efficacy of
the approach.

I. Introduction

Stochastic control of dynamic systems has received a great deal of attention in recent years.1–4 Predictive
stochastic control takes into account probabilistic uncertainty in dynamic systems and aims to control the
predicted distribution of the system state in some manner.

One important application of predictive stochastic control is robust path planning for vehicles under un-
certainty. Uncertainty arises due to uncertain state estimation, disturbances, and modeling errors. Predictive
stochastic control can be used to plan the predicted distribution of the vehicle state, in order to ensure that
the probability of failure is below a given threshold; this is known as a chance constraint .3 Failure can be
defined as collision with an obstacle, or failure to reach a goal region. Optimal predictive stochastic control
aims to find the best plan, in order to minimize fuel use, or time to completion, for example.

Predictive optimal stochastic control is a very challenging problem, since we must optimize over the
space of possible future state distributions. This space is typically very large indeed. Previous approaches
aim to make this problem tractable by discretizing this space, assuming a finite number of possible actions,
and applying Dynamic Programming to compute the value of each action for each belief state.5,6 This
typically leads to a vast Dynamic Programming problem that is impractical for on-line solution even with
the discretization assumptions. Furthermore, the discretization assumptions, in particular the assumption
that the number of possible actions is finite, are overly restrictive for a system such as an aircraft operating
in the real world.

Previous work has developed alternative approaches that use constrained optimization to solve chance
constrained stochastic control problems.7–9 These methods assume that the system under control is linear
and that all sources of uncertainty are Gaussian. Extending this work, (10) showed that robust vehicle path
planning can be posed as a chance-constrained stochastic control problem and solved using efficient Dis-
junctive Linear Programming techniques.11 This method can optimize over continuous, i.e. non-discretized,
actions and belief states, while being efficient enough to generate control actions online.



These methods, however, rely on the assumption that all uncertainty is described using Gaussian distri-
butions. In this work we describe a new approach that does not rely on the Gaussian assumption. The key
idea behind the new approach is to approximate all probability distributions using a finite set of samples, or
‘particles’.12 We then approximate the stochastic predictive control problem as a deterministic one, with the
property that as the number of particles tends to infinity, the approximation tends to the original stochastic
problem. This method can handle arbitrary, even multimodal, distributions, and in principle can deal with
nonlinear systems. However we show that in the case of linear systems, the resulting optimization problem
can be solved efficiently using Mixed Integer Linear Programming(MILP).13

Particle-based methods have been used extensively for estimation.14–18 These particle filtering methods
have been shown to be superior to traditional Kalman Filtering methods for non-Gaussian probability dis-
tributions.12 Control methods based on sampling have been investigated by a number of authors.19–22 For
example, (20) proposed a method for finite horizon control that approximates the expected cost of a given
control sequence using a finite number of samples. (21) and (22) use particles to approximate the value
function and its gradient in an optimal stochastic control problem, and use a gradient search method to find
a locally optimal solution. We extend the prior art in two significant ways. First, we incorporate constraints
on the probability of failure, enabling robust stochastic control, and second, we show that in the case of
stochastic linear dynamic systems, the resulting robust control problem can be solved to global optimality
using Mixed Integer Linear Programming in an extremely efficient manner.

We demonstrate the new method in simulation using two scenarios. In the first scenario we consider
altitude control of an aircraft within a convex region, subject to turbulence and uncertain localization.
In the second scenario we consider path planning for an aircraft in two dimensions, subject to obstacles,
wind disturbances and uncertain localization. The results show that the method is effective in solving the
approximated stochastic control problem, and that for a large number of particles the approximation error
becomes small.

II. Problem Statement

In this paper we are concerned with the following stochastic predictive control problem:

Design a finite, optimal sequence of control inputs, taking into account probabilistic uncertainty,
which ensures that the state of the system leaves a given feasible region with probability at most δ.

Here, optimality can be defined in terms of minimizing control effort, for example. In the case of vehicle
path planning, the feasible region can be defined so that the system state remains in a goal region at the
final time step, and avoids a number of obstacles at all time steps. We consider three sources of uncertainty:

1. The initial state is specified as a probabilistic distribution over possible states. This uncertainty arises
due to partial observability of the system state, which means that we must estimate a distribution over
the system state from noisy observations.

2. The system model is not known exactly. This may arise due to modeling errors or linearization.

3. Disturbances act on the system state. These are modeled as stochastic processes. In the case of aircraft
path planning, this may represent wind or turbulence disturbances.

We assume that the distributions of the uncertainty mentioned here are known at least approximately,
but we make no assumptions about the form the distributions take.

The key idea behind solving this stochastic control problem is to approximate all distributions using
samples, or particles, and then solve the resulting deterministic problem. In Section III we review some
results relating to sampling from random variables. In Section IV we then describe the new approach in
detail.

III. Sampling from Random Variables

Previous work has shown that approximating the probability distribution of a random variable using
samples drawn from that distribution, or particles, can lead to tractable algorithms for estimation and
control.12 Here we review some properties of samples drawn from random variables.



Suppose that we have a multivariate random variable X that has a probability distribution p(x). We
draw N independent, identically distributed random samples x(1), · · · ,x(N) from this distribution. Often,
we would like to calculate an expectation involving this random variable:

EX [f(X)] =
∫

f(x)p(x)dx (1)

In many cases this integral cannot be evaluated in closed form. Instead it can be approximated using the
sample mean:

ÊX [f(X)] =
1
N

N∑
i=1

f(x(i)) (2)

From the strong law of large numbers, the sample mean converges to the true expectation as N tends to
infinity.

ÊX [f(X)] −→ EX [f(X)] (3)

Hence the expectation, which could not be evaluated exactly in closed form, can be approximated as a
summation over a number of particles. This can be used to approximate the probability of a certain event,
such as the event f(x) ∈ A. This is given exactly by:

PA =
∫

f(x)∈A

p(x)dx (4)

This expression is equivalent to the expectation:

PA = EX [g(x)], (5)

where:

g(x) =

⎧⎨
⎩

1 f(x) ∈ A

0 f(x) /∈ A.
(6)

We can therefore approximate PA as:

P̂A =
1
N

N∑
i=1

g(x(i)) =
1
N

|{f(x(i)) ∈ A, i = 1, · · · , N}|, (7)

where |{f(x(i)) ∈ A, i = 1, · · · , N}| denotes the number of particles for which f(x(i)) ∈ A. Assuming that
evaluating f(·), and checking whether a given value is in A, are both straightforward, calculating P̂A is also;
we simply need to count how many of the propagated particles, f(x(i)) fall within A. By contrast, evaluating
PA as in (4) requires a finite integral over an arbitrary probability distribution, where even calculating the
bounds on the integral may be intractable. Hence the particle-based approximation is extremely useful,
especially given the convergence property:

P̂A −→ PA, (8)

as N tends to infinity. In Section IV we use this property to approximate the stochastic control problem
defined in Section II.

IV. Particle Optimization for Robust Stochastic Control

In this section we describe a new method for solving the robust stochastic control problem described in
Section II. In Section A we summarize the general method and explain the key ideas, while in Section B we
show that for the case of linear dynamic systems and polygonal constraints, the resulting optimization can
be solved efficiently using MILP.



A. Outline of General Method

The key observation behind the new method is that, by approximating all probabilistic distributions using
particles, an intractable stochastic optimization problem can be approximated as a tractable deterministic
optimization problem. By solving this deterministic problem we obtain an approximate solution to the
original stochastic problem, with the additional property that as the number of particles used tends to
infinity, the approximation becomes exact.

The method is outlined as follows. Consider a discrete-time dynamic system where the future states
x1, · · · ,xT are functions of the control inputs u0, · · · ,uT−1, the initial state x0, and disturbances ν0, · · · , νT−1.

x1 = f1(x0,u0, ν0) (9)
x2 = f2(x0,u0,u1, ν0, ν1)

...
xT = fT (x0,u0, · · · ,uT−1, ν0, · · · , νT−1)

The initial state and disturbances are uncertain, but are modeled as random variables with known distribu-
tions. Hence the future states are also random variables, whose distributions depend on the control inputs.
We assume that the initial state and disturbances are independent. Modeling errors can be modeled as an
additional stochastic disturbance process.23 For notational simplicity we assume for the rest of the devel-
opment a single disturbance process; however the method applies equally to multiple disturbance processes,
and hence to modeling errors as well as external disturbances.

Consider a stochastic control problem where the objective is to minimize h(u0, · · · ,uT−1,x1:T ) while
ensuring that the future state falls outside of the feasible region F , which need not be convex, with a
probability at most δ. Here, F is the feasible region for a state trajectory, and x1:T is a block vector
describing the state trajectory:

x1:T =

⎡
⎢⎢⎢⎢⎣

x1

x2

...
xT

⎤
⎥⎥⎥⎥⎦ (10)

The state trajectory falls outside of the feasible region if and only if x1:T /∈ F . The new particle control
method is as follows:

1. Generate N samples from the joint distribution of initial state and disturbances.
Since these are independent, this corresponds to generating two separate sets of samples {x(1)

0 , · · · ,x(N)
0 }

and {ν(1)
0 , · · · , ν

(N)
0 , · · · , ν

(1)
T−1, · · · , ν

(N)
T−1} drawn from the initial state and disturbance distributions re-

spectively.

2. Express the distribution of the future state trajectories approximately as a set of N particles, where each
particle x(i)

1:T corresponds to the state trajectory given a particular set of samples
{
x(i)

0 , ν
(i)
0 , · · · , ν

(i)
T−1

}
.

Each particle depends explicitly on the control inputs u0, · · · ,uT−1, which are yet to be generated.

x(i)
1:T =

⎡
⎢⎢⎢⎢⎣

x(i)
1

x(i)
2
...

x(i)
T

⎤
⎥⎥⎥⎥⎦ x(i)

t = ft(x
(i)
0 ,u0, · · · ,ut−1, ν

(i)
0 , · · · , ν

(i)
t−1) (11)

In Equation 11, x(i)
0 and ν

(i)
0 , · · · , ν

(i)
t−1 are known values sampled from random variables, whereas

u0, · · · ,ut−1 are decision variables over which to optimize.

3. Approximate the chance constraints in terms of the generated particles.
The original chance constraint is that the state trajectory x1:T must fall outside of the feasible region
with a probability at most δ:

p
(
x1:T /∈ F

) ≤ δ (12)



Using the result in Equation 7 the probability of failure is approximated as follows:

p(x1:T /∈ F ) =
∫
x1:T /∈F

p(x1:T )dx1:T ≈ 1
N

|{x(i)
1:T /∈ F, i = 1, · · · , N}|, (13)

where x(i)
1:T is defined in Equation 11. From Equation 12 and Equation 13, the approximated chance

constraint then becomes:
1
N

|{x(i)
1:T /∈ F, i = 1, · · · , N}| ≤ δ, (14)

where |{x(i)
1:T /∈ F, i = 1, · · · , N}| denotes the number of particles outside of the feasible region. In

other words, the approximate chance constraint is that a fraction of no more than δ of the particles
can fall outside of the feasible region. Note that a particle represents a state trajectory over the entire
planning horizon.

4. Approximate the cost function in terms of particles

ĥ(u0, · · · ,uT−1,x
(1)
1:T , · · · ,x(N)

1:T ) ≈ h(u0, · · · ,uT−1,x1:T ) (15)

5. Solve the deterministic constrained optimization problem for control inputs u0, · · · ,uT−1:

Minimize ĥ(u0, · · · ,uT−1,x
(1)
1:T , · · · ,x(N)

1:T )
Subject to:

1
N

|{x(i)
1:T /∈ F, i = 1, · · · , N}| ≤ δ (16)

The method is illustrated in Figure 1. This is a general formulation that can encompass a very broad
range of chance-constrained problems. It is not necessarily true, however, that the optimization problem
that results from this formulation is tractable. In Section B we show that in the case of linear system
dynamics and polygonal feasible regions, the optimization can be solved using efficient Mixed-Integer Linear
Programming methods.

B. Robust Control of Linear Systems

We now restrict our attention to the case of linear system dynamics and polygonal feasible regions. Further-
more, we assume that the cost function h is piecewise linear. Previous work has shown that optimal path
planning with obstacles for vehicles such as aircraft or satellites can be posed as finite horizon control design
for linear systems in polygonal feasible regions.24,25 Optimality can be defined in terms of fuel use or time,
for example. We extend this work by showing that the particle control method outlined in Section A can
be used to design control inputs for linear systems that are robust to probabilistic uncertainty in the initial
state and disturbances.

We consider the linear discrete time system model:

xt+1 = Axt + But + νt (17)

Substituting this system model into Equation 11 we obtain the following equation for x(i)
t :

x(i)
t =

t−1∑
j=0

At−j−1B(uj + ν
(i)
j ) + Atx(i)

0 (18)

Note that this is a linear function of the control inputs, and that x(i)
0 and ν

(i)
j are known values. Hence each

particle x(i)
1:T is a known linear function of the control inputs.

In accordance with Equation 14, we need to constrain the number of particles that fall outside of the
feasible region. We define a set of N binary variables z1, · · · , zN , where zi ∈ {0, 1}. These binary variables
are defined so that zi = 0 implies that particle i falls inside the feasible region. We then constrain the sum
of these binary variables:

1
N

N∑
i=1

zi ≤ δ (19)
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Figure 1. Illustration of new particle control method in a vehicle path planning scenario. The feasible region
is defined so that the plan is successful if the vehicle avoids the obstacles at all time steps and is in the goal
region at the final time step. The objective is to find the optimal sequence of control inputs so that the plan
is successful with probability at least 0.9. The particle control method approximates this so that at most 10%
of the particles fail.

This constraint ensures that the fraction of particles falling outside of the feasible region is at most δ. We
now describe how to impose constraints such that:

zi = 0 =⇒ x(i)
1:T ∈ F, (20)

first for convex polygonal feasible regions, then for non-convex polygonal feasible regions.

1. Convex Feasible Regions

An example of control within a convex feasible region is given in Figure 2. In this example, the state at each
time step, xt, is constrained to lie within a convex feasible region Ft. Together, these convex regions defined
for t = 1, · · · , T form a convex feasible region in the space of state trajectories. The feasible region for the
problem in Figure 2 is therefore convex in the space of state trajectories. As shown in Figure 2, defining
feasible regions at each time step can be used to ensure that the system state is taken from its initial value
to a defined goal region, and stays within specified bounds at all times.

A convex polygonal feasible region Ft defined for xt can be defined as a conjunction of linear constraints
aT

tlxt ≤ btl for l = 1, · · · , Nt, where atl is defined as pointing outwards from the polygonal region. Then xt

lies within Ft if and only if all of the constraints are satisfied:

xt ∈ Ft ⇐⇒
∧

l=1,··· ,Nt

aT
tlxt ≤ btl. (21)

This is illustrated in Figure 3. We now impose the following constraint:

aT
tlx

(i)
t − btl ≤ Mzi ∀t∀l, (22)
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Figure 2. Control within a convex polygonal feasible region. At each time step the state must remain within a
convex polygonal feasible region. In the space of state trajectories, the feasible region is a convex polyhedron.
This type of control can be used to ensure that the state ends up in the goal region and places hard constraints
on the state until then.
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Figure 3. Left: Two-dimensional convex polygonal feasible region Ft defined for the state at time t. The
vectors at1, · · · ,atNt are the unit outward normals to the Nt line segments that define the feasible region.
Right: Two-dimensional obstacle Oj modeled as a convex polyhedron. The vectors aj1, · · · ,ajNj

are the unit
outward normals to the Nj line segments that define the obstacle.

where M is a large positive constant. A value of zi = 0 implies that every constraint is satisfied for every
time step for particle i, whereas for large enough M , a value of zi = 1 leaves particle i unconstrained. We
therefore have:

zi = 0 =⇒ x(i)
t ∈ Ft ∀t =⇒ x(i)

1:T ∈ F, (23)

as required.

2. Non-convex Feasible Regions

Predictive control of linear systems within a non-convex feasible region is a much more challenging problem
than control within a convex feasible region.25 However, as shown by (24), vehicle path planning with
obstacles can be posed as such a problem, hence it is of great interest.

A polygonal non-convex feasible region can be described as the complement of a number of polygonal
infeasible regions, or obstacles. In other words, the state trajectory x1:T is in the feasible region if and only
if all obstacles are avoided for all time steps.

As noted by (24), avoidance of a polygonal obstacle can be expressed in terms of a disjunction of linear
constraints. That is, the system state at time t, xt, avoids the obstacle Oj shown in Figure 3 if and only if:

∨
l=1,...,Nj

aT
jlxt ≥ bjl (24)



In a similar manner to (24), we introduce binary variables dijtl ∈ {0, 1} that indicate whether a given
constraint l for a given obstacle Oj is satisfied by a given particle i at a given time step t. The constraint:

aT
jlx

(i)
t − bjl + Mdijtl ≥ 0, (25)

means that dijtl = 0 implies that constraint l in obstacle Oj is satisfied by particle i at time step t. Again
M is a large positive constant.

We now introduce binary variables eijt ∈ {0, 1} that indicate whether a given obstacle Oj is avoided by
a given particle i at a given time step t. The constraint:

Nj∑
l=1

dijtl − (Nj − 1) ≤ Meijt, (26)

ensures that eijt = 0 implies that at least one constraint in obstacle Oj is satisfied by particle i at time step
t. This in turn implies that obstacle Oj is avoided by particle i at time step t.

Next, we introduce binary variables gij ∈ {0, 1} that indicate whether a given obstacle Oj is avoided by
particle i at all time steps. The constraint:

T∑
t=1

eijt ≤ Mgij , (27)

ensures that gij = 0 implies that obstacle j is avoided at all time steps by particle i.
Finally, we introduce the constraint:

L∑
j=1

gij ≤ Mzi. (28)

This ensures that zi = 0 implies that all obstacles are avoided at all time steps by particle i. This in turn
ensures that, for non-convex feasible regions Ft,

zi = 0 =⇒ x(i)
t ∈ Ft ∀t =⇒ x(i)

1:T ∈ F, (29)

as required.

3. Cost Function

The cost function h can be defined to be a function of both the control inputs u0, · · · , uT−1 and the system
state trajectory x1:T . Since the system state is uncertain, however, a cost function involving the system state
must be defined in terms of expected cost. In this case we approximate the expectation using the sample
mean as in Equation 2. This is evaluated using the particle population as follows. The true expectation is
given by:

E[h] =
∫

h(u0, · · · ,uT−1,x1:T )p(x1:T )dx1:T (30)

Since p(x1:T ) can be an arbitrary distribution, this integral is intractable in most cases. The approximated
expectation is given by:

ĥ =
1
N

N∑
i=1

h(u0, · · · ,uT−1,x
(i)
1:T ), (31)

and this expression can be evaluated without integration. As the number of particles tends to infinity, we
have that:

ĥ −→ E[h] (32)

Furthermore, since we assume that h is a piecewise linear function of the state and control inputs, the
expression for ĥ in Equation 31 is also piecewise linear. Hence the approximate cost function ĥ is suitable
for use within a Mixed Integer Linear Program.



C. Summary

To summarize, the approximated stochastic predictive control problem defined in Section A can be posed as
a Mixed Integer Linear Program in the case of linear system dynamics, linear cost function, and a polygonal
feasible region. The resulting optimization finds the best sequence of control inputs such that at most a
fraction δ of the particles falls outside of the feasible region. This fraction approximates the probability of the
future state trajectory falling outside of the feasible region, and as the number of particles tends to infinity,
the approximation becomes exact. The optimality criterion is also approximated in terms of particles, and
the approximation becomes exact as the number of particles tends to infinity.

We have therefore introduced a new method for robust optimal control of stochastic linear systems,
where the probability distributions of uncertain variables can take an arbitrary form. We approximate the
probability of failure and constrain this value to be below a specified threshold. By adjusting the desired
probability of failure, it is possible to adjust the level of conservatism in the plan; this is demonstrated in
Section V.

In the case of vehicle path planning, we can specify obstacles to be avoided and goal regions in which
the state must fall at a given time by defining convex and non-convex feasible regions over the system
state xt at time t. We define failure as collision with an obstacle, or failure to reach a goal region. The new
particle control method can then find the optimal path for the vehicle, while taking into account probabilistic
uncertainty in the initial state, disturbances, and modeling error, so that the probability of failure is below
a specified value. Note that this is in contrast to our previous work,10 where only the probability of collision
with obstacles at a given time step could be constrained, and even this led to highly conservative plans.

In Section A we assumed that the probability distributions of all uncertain variables are known. In fact,
an approximation of the probability distribution described using a number of samples, is sufficient. This
is the case, for example, with vehicle localization, where particle filtering12 can be used to determine an
approximate probability distribution over the vehicle’s position. This lends the new particle control method
to being used in closed loop with a particle-based estimator, the estimator providing the set of particles
describing the initial state for the predictive controller. The particle controller then plans a sequence of
future control inputs in order to control the trajectory of these particles.

V. Results

We now present simulation results for the particle control method applied to two different aircraft control
scenarios. In Section A the method is used to control an aircraft within a flight envelope in heavy turbulence,
while in Section B the method is used to generate robust, optimal paths for an aircraft operating in an
environment containing obstacles.

A. Robust Predictive Control in a Convex Feasible Region

The new particle control method was used to generate robust predictive control inputs for an aircraft perform-
ing an altitude change maneuver in turbulence. In this scenario, successful execution means that the aircraft
remains within a defined flight envelope, which forms a convex region in the space of state trajectories. An
example is shown in Figure 4.

Disturbances due to turbulence have been studied extensively and are modeled as stochastic noise pro-
cesses that are far from Gaussian.26 In this work we use the Dryden turbulence model described in Military
Specification MIL-F-8785C.27 We assume heavy turbulence, as defined in MIL-F-8785C, with a low-altitude
wind velocity of 25m/s. Designing control inputs robust to such a non-Gaussian disturbance process is
a highly challenging problem, however the particle control formulation is able to deal with this example
naturally.

For the aircraft model, we use the linearized, discrete time longitudinal dynamics of a Boeing 747 travelling
at Mach 0.8. Time increments of two seconds were used. Since the angle of attack of most aircraft is low in
normal operation, linearizing the dynamics about the equilibrium state or trim state of the aircraft yields a
good approximation to the true dynamics, which can be used to develop control algorithms.28 Consistent
with prior approaches to robust predictive control,29,30 we assume that there is an inner-loop controller
issuing elevator commands, which is an altitude-hold autopilot. The aim of the predictive controller then,
is to issue altitude commands to the autopilot in an optimal, robust manner, so that the aircraft breaks the
flight envelope with a probability of at most δ. Optimality is defined in terms of fuel consumption, and we



assume the following relationship between fuel consumption F and elevator angle at time t, at:

F =
T−1∑
t=0

|at| (33)

Since we assume an inner loop controller issues elevator angle commands, at depends on the disturbances
that act on the aircraft; for example, if a fixed altitude is commanded by the predictive controller, the
autopilot will issue larger elevator commands in order to reject large disturbances than for smaller ones. Since
the disturbances are stochastic, we cannot directly optimize the fuel consumption defined in Equation 33.
We can, however, optimize the expected fuel consumption, as described in Section IV.

We assume a maximum elevator deflection of 0.5 radians, due to actuator saturation. Again, since
elevator deflection depends on stochastic disturbances, we cannot prevent actuator saturation with absolute
certainty. We can, however, define a chance constraint that, approximated using the particle control method,
ensures that actuator saturation occurs with at most a given probability. In the results shown here we define
this probability to be zero, thereby ensuring that saturation occurs with approximately zero probability.

The initial state distribution was generated using a particle filter. The particle filter tracked the system
state for ten time steps leading up to time t = 0 while the aircraft held altitude. Observations of pitch rate
and altitude were made subject to additive Rayleigh noise.31 This non-Gaussian noise means that a particle
filter will typically outperform a Kalman Filter. The number of particles used for estimation was the same
as that used for control.

Figure 4 shows two typical solutions generated by the particle control algorithm for 100 particles. In
the first solution, the desired probability of error is 0.1, while in the second, the desired probability of error
is 0.01. It can be seen that in the case of the lower value, the path taken by the particles is further away
from the edges of the flight envelope, causing one particle only to fall outside of the envelope. This more
conservative plan has a greater fuel cost of 3.82, compared to the less conservative one, which has a fuel cost
of 3.62. Hence conservatism can be traded off against fuel efficiency; the empirical relationship between the
two for this scenario is shown in Figure 5.

The particle control method solves an approximated stochastic control problem. The accuracy of the
approximation was assessed by calculating the true probability of failure for a given plan. This probability
was calculated by carrying out a very large number of random simulations. Since the generated plan depends
on the values sampled from the various probability distributions, 20 plans were generated for each scenario.
Figure 6 shows the results for a desired probability of failure of 0.1. It can be seen that the mean probability
of error gets closer to the desired value as the number of particles increases, and that the variance decreases.
For 100 particles, the approximation is close; the mean is 0.104 and the standard deviation is 0.024. Hence
the particle control algorithm can generate optimal solutions to problems that are very close to the full
stochastic control problem.

B. Robust Vehicle Path Planning with Obstacles

The new particle control method was also applied to a UAV path planning scenario with obstacles, wind
and uncertain localization. In this scenario, successful execution means that the UAV is in the goal region
at the end of the time horizon, and that the UAV avoids all obstacles at all time steps within the horizon.

Previous work has shown that an aircraft operating in a two-dimensional environment can be modeled
as a discrete-time linear system in the form of Equation 18.24 We use the same aircraft model and assume
a maximum aircraft velocity of 50m/s, time steps of 1s, and a planning horizon of 10s.

As in Section A, the goal of the robust control algorithm is to design a sequence of control inputs so
that the probability of failure is at most δ. Uncertain disturbances, due to wind, act on the UAV. We
use the Dryden wind model with a low-altitude wind speed of 15m/s and light turbulence, as defined in
MIL-F-8785C. We assume an inner-loop controller that acts to reject disturbances. Also, as in Section A,
uncertainty in localization leads to uncertainty in the initial position of the UAV. The obstacle map used is
shown in Figure 7. Optimality was again defined in terms of fuel consumption, which we assume is related
to input acceleration as follows:

F =
T−1∑
t=0

|ux,t| + |uy,t|. (34)



Here ux,t and uy,t are the commanded accelerations at time t in the x and y directions respectively. In
order to reduce the complexity of the resulting MILP problem we employed heuristic pruning techniques to
reduce the number of particles and number of obstacles considered that are considered, while still guarantee-
ing an optimal, feasible solution to the original problem. In this paper we do not describe these techniques
in detail; a principled development of this topic is the subject of future research.

Results for the scenario are shown in Figures 7 and 8. 50 particles were used for these examples. Figure 7
shows that if a probability of failure of 0.04 or above is acceptable, the planned path of the UAV can go
through the narrow corridor at (−50, 200). It can be seen that exactly two particles collide with the obstacles
as expected. For a lower probability of failure, however, the planned path is more conservative as shown in
Figure 8. This path avoids the narrow corridor at the expense of fuel efficiency.

These results show that the new particle control method is effective in designing optimal paths for an
aircraft that are robust to probabilistic uncertainty.

VI. Future Work

There are a number of promising areas for future research. First, while the particle control approach can
typically find optimal controls quickly enough for real-time operation of a system, such as an aircraft, in a
convex region, this is not the case for control within a non-convex region. This is because the resulting MILP
problem contains a number of binary variables exponential in the number of particles; this makes the MILP
problem intractable for a large number of particles. At the same time, the accuracy of the method depends on
having enough particles to approximate the distributions of the random variables accurately enough. Future
work will therefore draw upon ideas in particle filtering, where techniques such as importance sampling14 and
Rao-Blackwellisation15,32 are used to reduce the number of particles needed to cover the probability space
effectively. Second, the true probability of failure is biased towards being greater than the desired probability
of failure, as shown in Figure 6. The reason for this bias is now understood and will be addressed in future
work. Third, there are many areas other than robust control where considering non-Gaussian uncertainty
is typically intractable, for example system identification. Future work will investigate the application of
the method developed in this paper to these problems. Finally, the extension of this work to non-linear and
time-varying systems is a topic for future reseach.

VII. Conclusion

In this paper we have presented a novel approach to optimal, robust stochastic control that takes into
account probabilistic uncertainty due to disturbances, uncertain state estimation and modeling error so
that the probability of failure is less than a defined threshold δ. The new method approximates the original
stochastic problem as a deterministic one using a number of particles. By controlling the trajectories of these
particles in a manner optimal with regard to the approximated problem, the method generates approximately
optimal solutions to the original stochastic problem. Furthermore the approximation error tends to zero as
the number of particles tends to infinity. By using a particle-based approach, the new particle control method
is able to handle arbitrary probability distributions. We demonstrate the method in simulation with two
aircraft control scenarios and show that the true probability of failure tends to the desired probability of
failure as the number of particles used increases.
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Figure 4. Path of particles for two typical solutions to the flight envelope scenario. 100 particles were used.
Top: The desired probability of failure is 0.1, and ten particles fall outside of the flight envelope. Bottom: The
desired probability of failure is 0.01, and one particle falls outside of the flight envelope, at t = 18s.
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Figure 5. Mean fuel cost against desired probability of failure. The mean is taken over 20 different solutions
to the same problem. As the allowed probability of failure increases, the plan becomes less conservative and
the cost decreases.
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Figure 6. True probability of failure against number of particles used to design control inputs. The desired
probability of error was 0.1, shown as the dashed line. The results shown are for 20 sets of designed control
inputs, with the dots denoting the mean and the error bars denoting the standard deviation of the probability
of error. As the number of particles increases, the mean probability of error approaches the desired probability
of error and the variance decreases.
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Figure 7. Path of particles for typical solution to UAV path planning problem for a probability of failure of
0.04. Obstacles are in blue, while the goal is in red and dashed. At this level of conservatism, the aircraft is
able to pass through the narrow corridor. The thin blue dashed box is shown in more detail on the right. The
particle control method ensures that at most two particles collide with the obstacles. This solution has a fuel
cost of 73.98.
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Figure 8. Path of particles for typical solution to UAV path planning problem for a probability of failure of
0.02. Obstacles are in blue, while the goal is in red and dashed. At this level of conservatism, the aircraft no
longer passes through the narrow corridor, but goes around the largest obstacle. This solution has a fuel cost
of 74.72. Hence the reduced probability of failure comes at the expense of fuel.


