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Abstract

Probabilistic hybrid discrete/continuous models, such as Concurrent Probabilistic Hybrid Automata (CPHA) are convenient tools for modeling
complex robotic systems. In this paper, we present a novel method for estimating the hybrid state of CPHA that achieves robustness by balancing
greedy and stochastic search. To accomplish this, we (1) develop an efficient stochastic sampling approach for CPHA based on Rao–Blackwellised
Particle Filtering, (2) perform an empirical comparison of the greedy and stochastic approaches to hybrid estimation and (3) propose a strategy
for mixing stochastic and greedy search.

The resulting method handles nonlinear dynamics, concurrently operating components and autonomous mode transitions. We demonstrate the
robustness of the mixed method empirically.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Robotic and embedded systems have become increasingly
pervasive in a variety of applications. Space missions, such
as Mars Science Laboratory [1] have increasingly ambitious
science goals, such as operating for longer periods of time
and with increasing levels of onboard autonomy. Here on
Earth, robotic assistants, such as CMU’s Pearl [2] directly
benefit people in ways ranging from providing health care to
performing rescue operations.

In order to act robustly in the physical world, robotic systems
must handle the uncertainty and partial observability inherent
in most real-world situations. Robotic systems often face
unpredictable, harsh physical environments and must continue
performing their tasks (perhaps at a reduced rate), even when
some of their subsystems fail. For example, in land rover
missions, such as MSL, the robot needs to detect when one
or more of its wheel motors fail, which could jeopardize the
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safety of the mission. The rover can detect the failure from a
drift in its trajectory and then compensate for the failure, either
by adjusting the torque to its other wheels or by replanning its
path to the desired goal.

In our previous work we have developed methods for
estimating the state of systems that evolve in a discrete
manner, where system behavior is modeled by Concurrent
Probabilistic Constraint Automata (CPCA), one automaton per
component [3,4]. In many situations, however, a purely discrete
model is insufficient. Probabilistic hybrid models therefore
represent the system with both discrete and continuous state
variables that evolve probabilistically according to a known
distribution. The discrete state variables typically represent a
behavioral mode of the system, while the continuous variables
represent its continuous dynamics. Probabilistic hybrid models
can be used to provide an appropriate level of modeling
abstraction when purely discrete, qualitative models are too
coarse, while purely continuous, quantitative models are too
fine-grained.

In this paper, we investigate the problem of estimating the
state of systems with probabilistic hybrid models. Given a
sequence of control inputs and noisy observations, our goal
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is to estimate the discrete and continuous state of the hybrid
system. Probabilistic hybrid models are particularly useful for
fault diagnosis, the problem of determining the health state of
a system. With hybrid models, fault diagnosis can be framed
as a state estimation problem, by representing the nominal and
fault modes with discrete variables and the state of the system
dynamics with continuous variables.

Our previous work [5] developed the HME (Hybrid Mode
Estimation) system, which extended our work on discrete
model-based diagnosis for Concurrent Probabilistic Constraint
Automata, to reason about probabilistic hybrid models known
as Concurrent Probabilistic Hybrid Automata (CPHA) [5].
As with CPCA, CPHA represent the system as a collection
of concurrently operating automata, one automaton for each
component in the system.

In this paper we present a novel method for hybrid
estimation with CPHA that achieves robustness by balancing
greedy and stochastic search. The key insight behind the new
algorithm is that, in many AI and optimization methods, a
combination of stochastic and greedy search methods can be
effective in practice. This is analogous to the ‘exploration
vs. exploitation’ tradeoff, which has been used with great
success in Constraint Satisfaction Problems (CSP) [6] and
reinforcement learning [7], for example. Previous methods
for hybrid estimation have used either greedy search [8] or
stochastic sampling [9]. In this paper we show empirically
that these methods can have limited performance depending
on whether the belief state is concentrated in a few mode
sequences, or is relatively flat. The mixed greedy/stochastic
method, by contrast, is robust to changes in the variance of the
posterior distribution.

Developing this method requires three main technical con-
tributions. First, we introduce an efficient stochastic sampling
approach for CPHA based on Rao–Blackwellised Particle Fil-
tering (RBPF). Second, we perform an empirical study of the
greedy and stochastic CPHA methods on a simulated acro-
batic robot example. Third, based on the comparative insights
gained we propose a mixed exploration/exploitation strategy,
and demonstrate its superiority over the separate approaches.

The paper is organized as follows. In Section 2 we
consider existing methods for estimation with hybrid models.
In the general case, inference in hybrid models is NP-
hard [10]. Approximate inference using techniques in k-best
Gaussian filtering [8,11] have been effective for hybrid state
estimation. These methods represent the system state as a
mixture of Gaussians that are enumerated in decreasing order
of likelihood. Diagnostic errors can occur, however, if the
correct diagnosis is not among the leading set of hypotheses.
In this paper, we demonstrate this empirically. An alternative
approach is to use stochastic sampling to allow the system to
perform greater exploration, rather than performing a purely
greedy search. An example of such a method is Particle
Filtering, which approximates the posterior state distribution
using a finite number of particles [12,13]. Examples of
diagnosis systems include [9,14]. These particles are evolved
stochastically and resampled based on an appropriately defined
importance weighting. The inefficiency of sampling in high-
dimensional spaces has limited the effectiveness of Particle
Filtering for state estimation in hybrid systems [15]. To avoid
these problems, we therefore propose an efficient stochastic
sampling approach for CPHA based on Rao–Blackwellised
Particle Filtering. Rao–Blackwellised Particle Filtering exploits
a tractable substructure in the underlying model by sampling
only a subspace of the system state, while estimating the
remainder using an efficient analytical method.

Rao–Blackwellised Particle Filtering has been used for
hybrid state estimation in Switching Linear Dynamic Systems
(SLDS) [13,16], in which the discrete state d is a Markov
chain with a known transition probability p(dt |dt−1), and the
continuous state evolves linearly, with system and observation
matrices dependent on dt . In many domains, however,
simple Markovian transitions p(dt |dt−1) are not sufficiently
expressive [5,17]. In these domains, the transitions of the
discrete variables depend on the continuous state. Such
transitions are called autonomous. Furthermore, many systems
consist of several interconnected components, each of which
is in its own behavioral mode. Representing the joint mode of
all the components would be inefficient. In these cases, it is
desirable to represent the mode with several mode variables.
Finally, many systems have nonlinear dynamics. Each of
these properties — autonomous transitions, interconnected
components, and nonlinear dynamics, are expressed naturally
in CPHA.

In Section 3, we extend Rao–Blackwellised Particle
Filtering to handle autonomous mode transitions, nonlinearities
and concurrency. Applying Rao–Blackwellisation schemes to
models with autonomous transitions is difficult, since the
discrete and continuous state spaces of these models are closely
coupled. The key innovation in our algorithm is that it reuses
the continuous state estimates in the importance sampling step
of the Particle Filter. We extend the class of autonomous
transitions that can be handled over our previous work in [5,
18] to multivariable linear transition guards, in the case of
piecewise constant transition distributions, and to piecewise
polynomial transition distributions of arbitrary order, in the
case of single variables. Our RBPF algorithm handles nonlinear
dynamics by using an Extended Kalman Filter [19] or an
Unscented Kalman Filter [20]. We presented this innovation
in [18], this was also proposed independently by [21].

These developments provide the foundation for a unified
treatment of k-best enumeration and RBPF approaches to
hybrid state estimation. Both these approaches represent the
belief state by a mixture of Gaussians for a subset of mode
trajectories traced by the discrete state. The former approach
enumerates the trajectories in best-first order, while the latter
evolves them through sampling. While prior work [21] has
compared the performance of RBPF to other particle filters,
there has been little empirical comparison of RBPF and
k-best methods. Such an analysis is crucial to understanding the
trade-offs between the two methods, and to developing a new
approach that combines the strengths of both. In Section 6 we
carry out the comparison and show that both approaches have
limitations, depending on whether the posterior distribution
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is concentrated in a few discrete mode trajectories, or is
relatively flat across many different trajectories. These results
demonstrate the need for a new algorithm that is robust
to changes in the variance of the approximated posterior
distribution.

In Section 5 we develop such an algorithm. The
new algorithm uses Rao–Blackwellised Particle Filtering to
generate, stochastically, additional candidates to add to k-best
enumeration that would not have been tracked by a purely
greedy approach. The algorithm maintains a set of particles,
which are updated using RBPF, and a set of mode trajectories
with the highest posterior probability, generated by both RBPF
and k-best successor enumeration. This algorithm makes use of
the efficient properties of both k-best enumeration and RBPF,
while being probabilistically sound.

Using a simulated acrobatic robot, we demonstrate that the
mixed algorithm is effective for both a concentrated and flat
posterior distribution. The mixed algorithm shows a dramatic
increase in robustness for a small performance penalty.

2. Models and state estimation methods

Probabilistic hybrid models and hybrid estimation methods
date back to the 1970s [22] and are useful in many applications,
including visual tracking [23] and fault diagnosis [5,24]. In
this section, we review a formalism for modeling probabilistic
hybrid systems, known as Concurrent Probabilistic Hybrid
Automata. We then define the hybrid state estimation problem
and outline the existing approach to hybrid state estimation for
CPHA, based on greedy enumeration. This lays the groundwork
for the new approach, based on Rao–Blackwellised Particle
Filtering, which is described in Section 3.

2.1. Concurrent Probabilistic Hybrid Automata

We have previously developed Concurrent Probabilistic
Hybrid Automata [8], a formalism for modeling engineered
systems that consist of a large number of concurrently operating
components with nonlinear dynamics. A CPHA model
consists of a network of concurrently operating Probabilistic
Hybrid Automata (PHA), connected through shared continuous
input/output variables. Each PHA represents one component
in the system and has both discrete and continuous hidden
state variables. The automaton interacts with the other automata
in the surrounding world through shared continuous variables,
and its discrete state determines the evolution of its continuous
variables.

Definition 1. A Probabilistic Hybrid Automaton is a tuple
〈x, w, F, T, X0,Xd ,Ud〉 [5]:

• x denotes the hybrid state of the automaton. x , xd ∪ xc
where xd denotes the discrete state variables xd ∈ Xd and xc
denotes the continuous state variables xc ∈ Rnx .1
1 We let lowercase bold symbols, such as v, denote both the set of variables
{v1, . . . , vl } and the vector [v1, . . . , vl ]

T.
• w denotes the set of input/output variables, which consists
of input variables u, continuous output variables y ∈ Rny ,
and Gaussian noise variables vc ∈ Rnv . The input variables
consist of discrete input variables ud ∈ Ud , and continuous
input variables uc ∈ Rnu .

• F : Xd → FDE ∪ FAE specifies the continuous evolution
of the automaton for each discrete mode, in terms of the
set of discrete-time difference equations FDE and the set of
algebraic equations FAE over the variables xc, wc, and vc.

• T : Xd → 2P∪C specifies the discrete transition distribution
of the automaton as a finite set of transition probabilities
pτ i ∈ P over the target modes Xd and their associated guard
conditions ci ∈ C over xc ∪ u. The guard conditions ci form
a partition of the space Rnx × Ud × Rnu .

• X0 is a distribution for the initial state of the automaton, with
a Gaussian distribution p(xc,0|xd,0) for the continuous state
xc,0, conditioned on each discrete mode xd,0.

The transition function T (d), for some mode d, specifies
the transition distribution p(xd,t |xd,t−1 = d, xc,t−1, ut ). Each
tuple 〈pτ , c〉 ∈ T (d) defines the transition distribution as
having a constant value of pτ in the regions satisfied by the
guard c. The transition function can thus specify conditional
distributions p(xd,t |xd,t−1 = d, xc,t−1, ut ) that are piecewise
constant in the continuous state xc,t−1. While in keeping with
previous work we retain this definition for PHA, in Section 4.2
we show that our efficient hybrid estimation method can handle
piecewise polynomial transition functions.

Most engineered systems consist of several concurrently
operating components. Composition of PHA provides a
method for specifying a model for the overall system, by
specifying PHA models for its components and then combining
these models. Composed automata are connected through
shared continuous input/output variables, which corresponds to
connecting the system’s physical components through natural
phenomena, such as forces, pressures, and flows.

In order to compose PHA, we combine their hidden state
variables and their discrete and continuous evolution functions:

Definition 2. The composition CA of two Probabilistic
Hybrid Automata A1 and A2 is defined as a tuple
〈x, w, F, T, X0,Xd ,Ud〉, where:

x = xd ∪ xc, with xd , xd 1 ∪ xd 2 and xc , xc 1 ∪ xc 2,

w , w1 ∪ w2,

F(xd) , F1(xd 1) ∪ F2(xd 2),

T (xd) , T1(xd 1) × T2(xd 2),

X0(x) = X0 1(x1)X0 2(x2),

Xd , X d 1 × X d 2, and

Ud , Ud 1 × Ud 2.

We assume that xd 1,t and xd 2,t are independent, conditioned
on xc,t−1. In other words, the transitions of each component are
independent, conditioned on the continuous state.

The overall continuous evolution of the CPHA is determined
by taking the union of algebraic and difference equations for
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Fig. 1. A two-link acrobatic robot. The robot swings on a bar and may catch a
ball of known mass, whenever it is on the right side (θ1 > 0.55). The body of
the robot can be modeled as a PHA, where the hidden continuous state consists
of four variables, representing the angles and angular velocities at two joints.

each component PHA. The equations F(d) are then solved
using Groebner bases [25] and causal analysis [26] into the
standard form:

xc,t = f(xc,t−1, uc,t−1, vx,t−1, xd,t )

yt = g(yc,t−1, uc,t−1, vy,t−1, xd,t ),
(1)

where vx and vy are the components of vc corresponding to
process noise and observation noise, respectively. We assume
that models of real-world systems lead to equations F(d) that
permit a symbolic solver to arrive at the form given in (1);
refer to [27] for a more extensive discussion of this topic. A
number of conditional independency assumptions are implicit
in the state-space form (1). These are shown graphically in
Fig. 3. Note that we do not assume that discrete transitions are
independent of the continuous state.

In this paper we consider the acrobatic robot shown in Figs. 1
through 5. The goal of hybrid estimation here is to filter out the
acrobot’s hybrid state from a sequence of noisy observations
of θ2.
Fig. 2. A PHA for the two-link body of the acrobot system. Left: Transition model for the discrete state ball of the body, representing whether or not the robot
carries a ball of mass mball. When θ1 > 0.55, there is a probability at each time step of 0.01 that the state of ball changes. When θ1 ≤ 0.55, the state remains
the same. Right: Evolution of the automaton’s continuous state, one set of equations for each mode. The continuous dynamics for each mode can be derived
using Lagrangian mechanics and turned into a set of discrete-time difference equations, using the Euler approximation. The equations for this system are given in
Appendix A.2.
Fig. 3. Conditional dependencies in PHA among the state variables xc, xd and
the output y, expressed as a dynamic Bayesian network [28]. The edge from
xc,t−1 to xd,t represents the dependence of xd,t on xc,t−1, that is, autonomous
transitions. In hybrid models with Markovian mode transitions, this link is not
present.

Fig. 4. A composed model for the acrobatic robot in Fig. 1. Each component is
modeled with one Probabilistic Hybrid Automaton. The component automata
are shown in rectangles, with their state variables shown beneath. Using
composition, the PHA for an acrobot body can be augmented using a PHA
model of the torque actuator, and a model of the angular position sensor,
measuring θ2. The full discrete transition model is shown in Fig. 5. The actuator
exerts the commanded torque in the ok mode, but exerts zero torque in the
failed mode. The position sensor is modeled as adding Gaussian white noise
to the true value of θ2.

This completes our review of Concurrent Probabilistic
Hybrid Automata. We now consider the problem of state
estimation for these models.

2.2. Hybrid state estimation

Given a hybrid model of the system, our goal is to estimate
its state from a sequence of control inputs and observations:
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Fig. 5. Discrete transition model for the acrobot CPHA. If the actuator has
failed, it exerts no torque. When the robot catches the ball, ball=yes, and the
mass of the lower link increases.

Definition 3 (Hybrid State Estimation). Given a CPHA model
of the system CA and the sequence of control inputs u0, . . . , ut
and observed outputs y0, . . . , yt , at time t determine the
hybrid state estimate 〈xd,t , xc,t 〉 defined as the probability
p(xd,t , xc,t |y1:t , u0:t ).

In general, we can frame the hybrid state estimation problem as
that of approximating the posterior distribution 〈xd,t , xc,t 〉 and
use this distribution to compute characteristics of interest, such
as the MAP mode estimate or continuous state estimate.

2.3. K -best enumeration

Existing methods for hybrid estimation with CPHA models
have used a k-best enumeration approach [8]. This section
outlines the approach.

The desired distribution p(xd,t , xc,t |y1:t , u0:t ) can be
expressed as a sum of posterior distributions for all discrete
mode trajectories that end in state xd,t :

p(xd,t , xc,t |y1:t , u0:t ) =

∑
xd,0:t−1

p(xd,0:t , xc,t |y1:t , u0:t ). (2)

Each summand can be further expanded as a product of the
posterior probability of the discrete mode trajectory xd,1:t and
the posterior distribution of the continuous state, conditioned
on this mode trajectory:

p(xd,0:t , xc,t |y1:t , u0:t )

= p(xd,0:t |y1:t , u0:t )p(xc,t |xd,0:t , y1:t , u0:t ). (3)

This decomposition leads to a natural representation of the
belief state as a mixture of Gaussians, one for each reachable
mode trajectory xd,1:t . Given xd,1:t , the second term can be
approximated as a Gaussian, using a combination of a Kalman
Filter and numerical integration techniques, such as Gaussian
Quadrature and Exact Monomials [11]. The weight of each
mixture component is then computed using the belief state
update [18]:

p(xd,0:t |y1:t , u0:t ) = b(xd,0:t ) ∝ PO · PT · b(xd,0:t−1). (4)

In this equation, PT , p(xd,t |xd,0:t−1, y1:t−1, u0:t ) is the
prior probability of transitioning to a state xd,t , given the
past mode trajectory and past observations; we refer to this
as the transition prior. PO , p(yt |xd,0:t , y1:t−1, u0:t ) is the
measurement update. Both PT and PO can be calculated
approximately [8].

Naturally, tracking all possible mode sequences is infeasible;
the number of such sequences increases exponentially with
time. Indeed, inference in probabilistic hybrid models,
including SLDS, hybrid Bayesian networks, and CPHA, has
been shown to be NP-hard [10]. Nevertheless, in many
domains, efficient inference is possible by employing two
strategies: pruning (branching) and collapsing (merging).
Pruning removes some branches from the belief state, based
on the evidence observed so far, while collapsing combines
sequences with the same mode at their fringe to a single
hypothesis [29,30].

One example of a pruning approach that has been shown to
be particularly effective in both discrete and hybrid estimation
is k-best filtering [8,30,31]. K -best filtering methods focus the
state estimation on sequences with high posterior probability.
Typically, a k-best filter starts with a set of mode sequences at
one time step and expands these sequences to obtain the set
of leading sequences at the next time step. Since in CPHA,
the transitions of each component are independent conditioned
on the continuous state (see Definition 2), an efficient solution
is to frame the expansion as a search and solve it using a
combination of branch and bound and A* algorithms [8]. The
pseudocode for this approach is shown in Figs. 6 and 7. The
k-best enumeration approach has been shown empirically to be
an efficient technique for hybrid state estimation in systems that
exhibit autonomous mode transitions, nonlinear dynamics and
concurrency [8].

This completes our review of CPHA and k-best enumeration.
In Section 3 we develop a complementary, stochastic method
based on Rao–Blackwellised Particle Filtering. By combining
these methods, making use of the insight from the empirical
comparison in Section 6, we develop a robust, memory-efficient
method that balances exploration and exploitation (Section 5).

3. Rao–Blackwellised particle filtering for CPHA

The key contribution of this section is an approximate
Rao–Blackwellised particle filtering (RBPF) algorithm for
CPHA that handles autonomous mode transitions, that is, those
that depend on the continuous state, as well as nonlinear system
dynamics and concurrency.

3.1. Overview of Rao–Blackwellised particle filtering for
CPHA

The new approximate RBPF algorithm is our first step
in developing a mixed exploitation/exploration strategy for
CPHA, and complements our greedy k-best approach for
CPHA. To achieve memory-efficiency, we use particles to
represent Gaussian distributions conditioned on a particular
mode sequence, and we develop a Gaussian particle filter
for CPHA as an instance of a Rao–Blackwellised Particle
Filter [13,22].
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Fig. 6. Hybrid estimation for CPHA using k-best enumeration. The variables g and h denote the node cost and heuristic cost-to-go, respectively.

Fig. 7. Node expansion for k-best enumeration algorithm.
Our algorithm is illustrated in Fig. 8. In the spirit of
prior approaches to RBPF [13,22], our algorithm exploits
the structure in the estimation problem and samples only
the discrete mode sequences. Conditioned on each sampled
sequence, the new algorithm approximates the associated
continuous state distribution as a Gaussian in closed form, using
an Extended [19] or an Unscented Kalman Filter [20]. Each
particle holds a sample trajectory x(i)

d,0:t and the corresponding

continuous estimate 〈x̂(i)
c,t , P(i)

t 〉. This is described in detail in
Section 3.3.

The algorithm starts by taking a fixed number of
random samples from the initial distribution over the mode
variables p(xd,0) (Step 1). For each sampled mode x(i)

d,0, the

corresponding initial continuous distribution p(xc,0|x
(i)
d,0) is

specified by the PHA model. At each time-step, the algorithm
then uses the model to expand the mode sequences of each
particle and to update the corresponding continuous estimates
(see Fig. 8, Step 2). This is done by first evolving each particle
by taking one random sample x(i)

d,t , for each particle, from a

suitably chosen proposal distribution q(xd,t |x
(i)
d,0:t−1, y1:t , u0:t ).

Intuitively, the proposal is a distribution close to the true
distribution that we are trying to determine, p(xd,t |xd,0:t−1 =

x(i)
d,0:t−1, y1:t , u0:t ); that is, the posterior probability of a given

mode sequence given all of the observations up to time t .
The posterior distribution is difficult to calculate in closed
form, so instead we sample from the proposal distribution,
which we choose to be easy to calculate. We then compensate
for the discrepancy between the proposal distribution and
the true distribution by assigning an importance weight w

(i)
t

for each new mode sequence x(i)
d,0:t . Finally, the resampling
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Fig. 8. Rao–Blackwellised Particle Filter for PHA.
step duplicates particles according to their weighting, thereby
adjusting the number of particles wherever the proposal
distribution does not match the desired distribution [12].

In order to instantiate this algorithm we must define the
proposal distribution and the importance weight. For the pro-
posal distribution we choose the distribution p(xd,t |xd,0:t−1 =

x(i)
d,0:t−1, y1:t−1, u0:t ), which is the transition prior mentioned

in Section 2.3. We show in Section 3.4 that this distribution
can be calculated efficiently, even when the model includes au-
tonomous mode transitions. The importance weights then cor-
rect for the discrepancy between the proposal and the poste-
rior distribution by taking into account the latest observation
yt . In Section 3.6 we show that this can be computed using the
Kalman Filter innovation.

Finally, in Section 3.7 the algorithm outlined in Fig. 8
is extended to deal with Concurrent Probabilistic Hybrid
Automata.

3.2. Rao–Blackwellised particle filtering

In this section we summarize briefly Particle Filtering for
hybrid state estimation, and review Rao–Blackwellised Particle
Filtering.

Particle filters approximate the posterior distribution for the
hybrid state xt with a set of sampled sequences {x(i)

0:t }. These
samples are evolved sequentially and approximate the posterior
distribution p(xt |y0:t , u0:t ) as the probability density function

p̄N (xt ) =
1
N

N∑
i=1

δ(x − x(i)
t ). (5)

In the simplest solutions, the samples are taken from the
complete hybrid state Xd × Rnx , and are evolved in three
Fig. 9. The three steps of a simple particle filter for a PHA model with one
discrete and one continuous variable.

steps, as illustrated in Fig. 9. In the first, initialization step,
the algorithm samples the initial distribution p(x0); thus,
effectively approximating the posterior at t = 0. Then, in each
iteration, the particles x(i)

0:t are evolved by taking one random

sample x(i)
t from an appropriately chosen proposal distribution,

and by assigning importance weights that account for the
differences between the proposal and the posterior distributions.
The final step selects a number of offspring for each particle
according to its weight, thus duplicating the “good” ones and
removing the “bad” ones.

In practice, sampling in high-dimensional spaces can be
inefficient, since many particles may be needed to cover
the probability space and attain a sufficiently accurate
estimate. Several methods have been developed to reduce
the variance of the estimates, including decomposition [32]
and abstraction [33]. One particularly effective method is
Rao–Blackwellised Particle Filtering [12,22,34]. This method
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2 Certain distributio
statistic Given this stat
Fig. 10. Generic RBPF algorithm [35].
is based on a fundamental observation that with some
estimation problems, a particular part of the desired distribution
can be determined efficiently without using a sampling
approach. By factoring out this portion, we obtain a more
efficient approach that only samples the remaining variables.

Formally, if we partition the state variables into two sets,
r and s, we can use the chain rule to express the posterior
distribution p(x0:t |y1:t , u0:t ) as:

p(x0:t |y1:t , u0:t ) = p(s0:t , r0:t |y1:t , u0:t )

= p(s0:t |r0:t , y1:t , u0:t )p(r0:t |y1:t , u0:t ). (6)

Thus, we expand the posterior in terms of the sequence
of random variables r0:t and in terms of the sequence s0:t
conditioned on r0:t . The key to this formulation is that
if we can compute analytically the conditional distribution
p(s0:t |r0:t , y1:t , u0:t ) or its marginal p(st |r0:t , y1:t , u0:t ), then
we only need to sample the sequences of variables r0:t , not both
s0:t and r0:t . Intuitively, far fewer particles will be needed in
this way to reach a given precision of the estimate, since for
each sampled sequence r0:t , the corresponding state space s is
covered by an analytical solution, rather than a finite number of
samples.

In Rao–Blackwellised particle filtering (RBPF), each
particle holds not only the samples r(i)

0:t , but also a parametric

representation of the distribution p(st |r
(i)
0:t , y1:t ) for each sample

i , which we denote by α
(i)
t . This representation holds sufficient

statistics for p(st |r
(i)
0:t , y1:t ), such as the mean vector and the

covariance matrix of a Gaussian distribution.2 The posterior is
thus approximated as a mixture of the distributions α

(i)
t at the

sampled points r(i)
0:t :

p(s0:t , r0:t |y1:t , u0:t ) ≈

N∑
1

αt (i)δ(r0:t − r0:t
(i)). (7)

A generic RBPF method is outlined in Fig. 10, and, except
for the initialization and the addition of the exact step, it is
identical to the particle filter, illustrated in Fig. 9. Under weak
ns can be encoded compactly in terms of a sufficient
istic, the distribution is defined completely.
assumptions, the Rao–Blackwellised estimate converges to the
estimated value as N → +∞, with a variance smaller than the
non-Rao–Blackwellised particle filtering method with the same
number of particles [15]. Hence the RBPF is superior given a
fixed number of particles; however, the run-time performance
of the filter will depend on the cost of the exact update for α

(i)
t .

Having reviewed Rao–Blackwellisation, we now describe
how we apply this concept to PHA.

3.3. Rao–Blackwellisation for hybrid estimation with PHA

When estimating the hybrid state of Probabilistic Hybrid
Automata, the posterior distribution over the continuous state,
p(xc,t |xd,0:t , u0:t ), can be approximated efficiently in an
analytical form using an Extended or Unscented Kalman Filter.
We can, therefore, apply Rao–Blackwellisation to the hybrid
estimation problem for PHA by taking r = xd and s = xc.

We sample the mode sequences x(i)
d,0:t with a particle

filter and, for each sampled sequence x(i)
d,0:t , we estimate the

continuous state with a Kalman Filter. The result of Kalman
Filtering for each sampled sequence x(i)

d,0:t is the estimated mean

x̂(i)
c,t and the error covariance matrix P(i)

t . The samples x(i)
d,0:t

serve as an approximation of the posterior distribution over
the mode sequences, p(xd,0:t |y1:t , u0:t ), while each continuous
estimate 〈x̂(i)

c,t , P(i)
t 〉 serves as a Gaussian approximation of the

conditional distribution p(xc,t |xd,0:t = x(i)
d,0:t , y1:t , u0:t ) , αi

t .

Since the estimate 〈x̂(i)
c,t , P(i)

t 〉 merely approximates αi
t , we are

not performing a strict Rao–Blackwellisation; nevertheless, the
distribution will be accurate up to the approximations in the
Extended or the Unscented Kalman Filter.

The continuous estimate for each new mode sequence x(i)
d,0:t

is updated as shown in Fig. 8(ii). Since in a PHA, each mode
assignment d over the variables xd is associated with transition
and observation functions:

xc,t = f(xc,t−1, ut−1, d) + vx (d)

yt = g(xc,t , ut , d) + vy(d),
(8)

we update each estimate x̂(i)
c,t−1, P(i)

t−1 with a Kalman Filter,
using the transition function f(xc,t−1, ut−1, d), observation
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function g(xc,t , ut , d), and noise variables vx (x
(i)
d,t ) and

vy(x
(i)
d,t ), to obtain a new estimate 〈x̂(i)

c,t , P(i)
t 〉.

We now consider the approximation error introduced by
using an Extended or Unscented Kalman Filter in the presence
of autonomous mode transitions. Such transitions can be used to
model severe nonlinearities, and it is possible to construct cases
where the error between the Kalman Filter approximation and
the true distribution is large. In this case, the only alternative
approach is to use a non-Rao–Blackwellised Particle Filter at
greatly increased computational cost. However under relatively
weak assumptions, the Kalman Filter approach developed in
this section is an effective compromise that introduces relatively
small error at low computational cost. Extensive empirical
validation by [21,36] has shown that for fault diagnosis
in real-world systems, with autonomous mode transitions, a
Rao–Blackwellised approach has a dramatically lower error
rate than a normal Particle Filter operating with the same
computational resources. In addition to this, in Appendix A.1
we analyze the Kullback–Liebler divergence between the true
distribution, and the Kalman Filter approximation, and show
that the divergence is reasonably small in most cases.

Hence Rao–Blackwellisation can be applied to hybrid
estimation with PHA. We now describe the rest of the algorithm
in detail.

3.4. Proposal distribution

In particle filtering, the proposal distribution is chosen to
be one that is close to the desired distribution, but that can
also be calculated efficiently in closed form. In this section we
specify the proposal distribution q(xd,t |x

(i)
d,0:t−1, y1:t , u0:t ) and

show how it is calculated efficiently, while taking into account
autonomous mode transitions.

An autonomous mode transition is a form of guarded transi-
tion for which the transition distribution p(xd,t |xd,t−1, xc,t−1,

ut−1) depends explicitly on the continuous state xc,t−1. In
PHA, the transition distribution is specified as a finite set of
guard conditions c and their associated transition probabilities
pτ . Each guard condition specifies a region over the contin-
uous state and automaton’s input/output variables, for which
p(xd,t |xd,t−1, xc,t−1, ut−1) = pτ . Hence the transition distri-
bution is piecewise constant over xc,t−1 (see Fig. 11).

We choose the proposal distribution to be p(xd,t |xd,0:t−1 =

x(i)
d,0:t−1, y1:t−1, u0:t ). This distribution expresses the probabil-

ity of the transition from the mode x(i)
d,0:t−1 to each mode

xd,t ∈ Xd and is similar in its form to the transition distribution
p(xt |xt−1) in a Markov process. However, it is conditioned on a
complete discrete state sequence and all previous observations
and control actions, rather than simply on the previous state.
This is because {xd,t } alone is not an HMM process: due to
the autonomous transitions, knowing only xd,t−1 does not tell
us what the distribution of xd,t is. The distribution of xd,t is
known only when conditioned on the mode and the continuous
state for the previous time step (see Fig. 3). Since the continu-
ous state must be estimated, rather than being observed directly,
autonomous transitions make calculation of the proposal chal-
lenging.
Fig. 11. Probability of a mode transition ball=no to ball=yes as a function
of θ1,t−1 for the ball PHA in Fig. 2.

We are able to calculate the proposal distribution efficiently
for each tracked mode sequence x(i)

d,0:t−1 by using the

continuous estimate 〈x̂(i)
c,t−1, P(i)

t−1〉 as follows: From the total
probability theorem, the proposal distribution is equal to the
joint distribution of xd,t and xc,t−1, marginalized over xc,t−1.
The joint distribution can then be expressed in terms of the
discrete transition probability conditioned on the previous state,
and the continuous state distribution conditioned on the i-th
sequence, p(xc,t−1|x

(i)
d,0:t−1, y1:t−1, u0:t ) , αi

t−1:

p(xd,t |x
(i)
d,0:t−1, y1:t−1, u0:t )

=

∫
xc,t−1

p(xd,t , xc,t−1|x
(i)
d,0:t−1, y1:t−1, u0:t )dxc,t−1

=

∫
xc,t−1

p(xd,t |x
(i)
d,0:t−1, y1:t−1, xc,t−1, u0:t )

× p(xc,t−1|x
(i)
d,0:t−1, y1:t−1, u0:t )dxc,t−1

=

∫
xc,t−1

p(xd,t |x
(i)
d,t−1, xc,t−1, ut−1)

× p(xc,t−1|x
(i)
d,0:t−1, y1:t−1, u0:t−1)dxc,t−1. (9)

Here, the third equality comes from the independence
assumptions made in the model; as shown in Fig. 3, the
distribution of xd,t is independent of the observations y1:t−1
and mode assignments prior to time t − 1, given the state at
time t − 1.

The proposal distribution can therefore be expressed as
an integral over two known quantities; first, the transition
distribution p(xd,t |x

(i)
d,t−1, xc,t−1, ut−1), which is expressed in

the PHA model; and second, the continuous state distribution
αi

t−1. The latter is approximated by the continuous estimate

〈x̂(i)
c,t−1, P(i)

t−1〉.
Typically, when performing Rao–Blackwellisation, the

integral in (9) is difficult to evaluate efficiently [35]. In this
section we show that for PHA, however, efficient evaluation of
this integral is possible.

For the piecewise constant transition distribution in PHA,
the left term in the integral in (9), p(xd,t |x

(i)
d,t−1, xc,t−1, ut−1)

takes on only a finite number of values pτ j (xd,t ). Hence we
can split the integral domain into the sets X j that satisfy the
guard condition c j and factor out the transition probability pτ j :∫

xc,t−1

p(xd,t |x
(i)
d,t−1, xc,t−1, ut−1)

× p(xc,t−1|x
(i)
d,0:t−1, y1:t−1, u0:t−1)dxc,t−1
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=

∑
j

∫
X j

p(xd,t |x
(i)
d,t−1, xc,t−1, ut−1)

× p(xc,t−1|x
(i)
d,0:t−1, y1:t−1, u0:t−1)dxc,t−1

=

∑
j

pτ j (xd,t )

×

∫
X j

p(xc,t−1|x
(i)
d,0:t−1, y1:t−1, u0:t−1)dxc,t−1

=

∑
j

pτ j (xd,t ) Pr
α

(i)
t−1

[X j ]. (10)

Here, Pr
α

(i)
t−1

[X j ] is the probability that guard condition c j is

satisfied.
The second equality holds because, for the region X j , the

conditional distribution p(xd,t |x
(i)
d,t−1, xc,t−1, ut−1) is fixed and

equal to pτ j . Therefore, in each summed term, we multiply
the transition distribution pτ j by the probability of satisfying

the guard condition c j in the distribution α
(i)
t−1. Hence, the key

contribution for PHA is that, given the probability of satisfying
each guard condition c j , the proposal distribution for each
sample i is calculated by summing over all of the possible guard
conditions.

3.5. Evaluating the probability of satisfying transition guards

Given the derivation in the previous section, the remaining
challenge in computing the proposal distribution is to evaluate
the probability of satisfying the guard condition c j , given the

distribution α
(i)
t−1 = p(xc,t−1|x

(i)
d,0:t−1, y1:t−1, u0:t−1). For the

following derivation, we assume without loss of generality, that
the guard conditions are only over the continuous state.3

As described in Section 3.3, the posterior distribution α
(i)
t−1

is approximated using a Gaussian distribution with mean x̂(i)
c,t−1

and covariance P(i)
t−1. The probability of xc,t being in the guard

region X j is then simply an integral over a known Gaussian
distribution:

Pr
α

(i)
t

[X j ] ≈
1

(2π)nc/2|P(i)
t−1|

1/2

×

∫
X j

e−
1
2 (xc−x̂(i)

c,t−1)
TP(i)

t−1
−1

(xc−x̂(i)
c,t−1) dxc. (11)

When the guard conditions are of the form x < c or x ≤ c,
for some constant c, such as θ1 < 0.55, the integral in (11)
simplifies to evaluating the cumulative density function D(c) of
the normal variableN (µ, σ 2), where µ = (x̂(i)

c,t−1)x is the mean

of variable x in x̂(i)
c,t−1 and σ 2

= (P(i)
t )x is its variance Fig. 12:

D(c) ,
1

σ
√

2π

∫ c

−∞

e−(x−µ)2/(2σ 2)dx . (12)

The cumulative density function D(c) is evaluated using
3 Guard conditions involving discrete or continuous input variables, such as
cc(xc)∧cd (ud ), are handled by setting Pr

α
(i)
t−1

[X j ] ≡ 0 whenever cd (ud ) is not

satisfied. More complex guards are transformed to a number of simpler guards
using elementary rules of logic.
Fig. 12. Evaluating single-variate guard conditions.

standard numerical methods, such as a trapezoidal approxima-
tion or using a table lookup. In order to evaluate the probability
of the complementary guards x > c or x ≥ c, we take the
complement of the cumulative density function, 1 − D(c).

The above forms of guard conditions can be viewed as a
special case of a more general form, in which x falls into
an interval [l, u],4 where l, u are in the extended set of real
numbers R+ , R ∪ {−∞, +∞} that includes positive and
negative infinity. In these cases, the probability of satisfying a
guard condition can be expressed as the difference of the c.d.f.
at the endpoints of the interval, D(u) − D(l).

We have previously used this technique with our k-best
enumeration approach for CPHA [5]. Using this approach for
RBPF, we are able to calculate the proposal distribution in
Section 3.4 efficiently for a particular class of autonomous
mode transitions; those whose guard conditions are intervals
over a single variable. In Section 4.1 we generalize this method
to apply to CPHA with multi-variate linear guard conditions.

Within the CPHA modeling formalism, however, the
transition distribution, that is, p(xd,t |x

(i)
d,t−1, xc,t−1, ut−1), is

still constrained to be piecewise constant in xc,t−1. We present
results that show that this constraint can be relaxed. In
Section 4.2 we generalize the approach in this section to
calculate the transition prior p(xd,t |x

(i)
d,0:t−1, y1:t−1, u0:t ) for

arbitrary polynomial transition distributions. This transition
prior is used in the Rao–Blackwellised Particle Filter, as the
proposal distribution, and in k-best enumeration. Hence this
contribution expands the class of autonomous mode transitions
that can be handled by both approaches to hybrid estimation.

3.6. Importance weights

In this section we describe how, given our choice of
proposal distribution, the importance weight can be calculated.
The importance weight compensates for the discrepancy
between the proposal distribution, which we chose to be the
transition prior p(xd,t |xd,0:t−1 = x(i)

d,0:t−1, y1:t−1, u0:t ), and the

desired distribution, p(xd,t |xd,0:t−1 = x(i)
d,0:t−1, y1:t , u0:t ). The

importance weight determines how many duplicates of a given
particle are generated, thereby adjusting the number of particles
for which the proposal distribution did not match the desired
distribution. In our case, the importance weight incorporates
the latest observation in order to update the prior distribution,
to give the posterior distribution.
4 Whether the interval is closed or open matters only if x can have a zero
variance. It is straightforward to generalize the discussion here to open and
half-open intervals.
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5 Note that, compared to the generic RBPF algorithm in Fig. 10, the
importance weight is now calculated after the exact step, because the innovation
mean and covariance, computed in the Kalman Filter update step, are used to
compute the importance weight.
Given our choice of proposal distribution, the weights w
(i)
t

simplify to

w
(i)
t ,

p(yt |x
(i)
d,0:t , y0:t−1)p(x(i)

d,t |x
(i)
d,0:t−1, y0:t−1)

q(x(i)
d,t , x(i)

d,0:t−1, y0:t )

= p(yt |x
(i)
d,0:t , y0:t−1, u0:t ). (13)

This expression represents the likelihood of the observation
yt , given a complete mode sequence x(i)

d,0:t , inputs u0:t , and
previous observations y0:t−1. PHA, like most hybrid models,
do not directly provide this likelihood and only provide the
probability of an observation y, conditioned on the discrete
and continuous state. This likelihood is approximated using the
Kalman Filter innovation at time t as follows.

In the Kalman Filter predict/measurement cycle, the
Gaussian distribution α

(i)
t−1 = N (x̂(i)

c,t−1, P(i)
t−1) is propagated

through the continuous transition and observation functions
for mode x(i)

d,t (8). For SLDS models, this gives a Gaussian
distribution for the observed value yt , with mean yp and

covariance S(i)
t . The Kalman Filter innovation, r = yt − yp,

is defined as the difference between the expected observation
and the actual observation. For SLDS models, the observation
likelihood in (13) is calculated exactly as [29]:

w
(i)
t =

1

(2π)N/2|S(i)
t |1/2

e−0.5rT(S(i)
t )−1r. (14)

A similar approach leads to an efficient approximation of
the weight in the case when the model contains nonlinear
dynamics and autonomous transitions. Due to the nonlinearities
and autonomous transitions, the conditional distribution α

(i)
t−1 =

p(xc,t−1|x
(i)
d,0:t , y0:t−1, u0:t ) is no longer strictly Gaussian.

Nevertheless, if we approximate it with the estimated Gaussian
N (x̂(i)

c,t−1, P(i)
t−1), as we have done in the previous subsections,

we can compute the weight in (13) from the Extended [19]
or the Unscented [20] Kalman Filter measurement update. For
example, with an Extended Kalman Filter, the observation
likelihood is computed by first propagating the Gaussian
distributionN (x̂(i)

c,t−1, P(i)
t−1) through the system model in mode

x(i)
d,t :

x̂(i−)
c,t = f(x̂(i)

c,t−1, ut−1) (15)

A =
∂f
∂xc

|x̂(i)
c,t (16)

P(i−)
t = AP(i−)

t AT
+ Q, (17)

where Q = cov(vx (x
(i)
d,t )) is the system noise in mode x(i)

d,t . This

leads to the observation prediction yp with covariance S(i)
t :

yp = g(x̂(i−)
c,t , ut ) (18)

C =
∂g
∂xc

|x̂(i−)
c,t (19)

S(i)
t = CP(i−)

t CT
+ R, (20)
where R = cov(vy(x
(i)
d,t )) is the observation noise in mode x(i)

d,t .
The observation likelihood in (13) can then be approximated
with normal p.d.f.

w
(i)
t =

1

(2π)N/2|S(i)
t |1/2

e−0.5rT(S(i)
t )−1r. (21)

We have therefore presented an novel, approximate Rao–
Blackwellised particle filtering algorithm for Probabilistic
Hybrid Automata. This is able to handle autonomous mode
transitions and nonlinear dynamics. in Section 3.7 we
extend this method to handle concurrent Probabilistic Hybrid
Automata (CPHA).

3.7. Rao–Blackwellised Particle Filtering for CPHA

In practice, a model will be composed of several
concurrently operating automata that represent individual
components of the underlying system. In this manner, the
design of the models can be split on a component-by-
component basis, thus enhancing the reusabiliy of the models
and reducing modeling costs. In this section we extend our
Rao–Blackwellised Particle Filter for PHA, developed in the
previous section, to handle concurrent PHA models; see
Section 2.1 for an overview of CPHA.

In CPHA, component transitions are conditionally indepen-
dent, given the current discrete and continuous state (Defini-
tion 2). Therefore, it is possible to compute the transition prob-
abilities P(i)

T for each tracked mode sequence componentwise
[5,37]. This property is exploited by our algorithm in the im-
portance sampling step, whereby the samples are evolved ac-
cording to the transition distribution PT on a component-by-
component basis.

The algorithm in Section 3 sampled the mode sequences ac-
cording to the proposal distribution q(xd,t |x

(i)
d,0:t−1, y1:t , u0:t ) =

p(xd,t |x
(i)
d,0:t−1, y1:t−1, u0:t ) , P(i)

T ,t . This represents the prior
probability of being in the mode xd,t at time t , conditioned
on the previous sequence of modes x(i)

d,0:t−1 and observations
y1:t−1, leading to that mode. Given this choice of the proposal,
the importance weights simplify to:

w
(i)
t = p(yt |x

(i)
d,0:t , y1:t−1, u0:t ) , P(i)

O,t . (22)

When sampling mode sequences in CPHA, we use the
same proposal distribution. The only difference is that now,
instead of computing the transition probability for every
value in the domain Xd of the discrete variables xd , we
evaluate it only for the individual component’s discrete
domain Xd j , and obtain the joint transition distribution

p(xd,t |x
(i)
d,0:t−1, y1:t−1, u0:t ) as a product of component

transition distributions
∏

j p(xd j,t |xd j,0:t−1, y1:t−1, u0:t ), for
all components j in the model (see Section 3.4).

The final algorithm is shown in Fig. 13.5 To summarize,
using a Rao–Blackwellised Particle Filtering approach, this
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Fig. 13. Rao–Blackwellised Particle Filter for CPHA.
algorithm is able to estimate efficiently the hybrid state
of Concurrent Probabilistic Hybrid Automata, which have
autonomous mode transitions, nonlinear dynamics, and many
concurrently operating components.

4. Generalizing autonomous mode transitions

In this section we extend the class of autonomous mode
transitions that can be handled by both k-best enumeration
and Rao–Blackwellised Particle Filtering for CPHA. We
describe the generalization to linear transition guards over
multiple variables, in the case of piecewise constant transition
distributions, and to polynomial transition distributions of
arbitrary order, in the case of single variables.

4.1. Multi-variate guard conditions

The key challenge in handling autonomous mode transitions
is to compute the transition prior p(xd,t |x

(i)
d,0:t−1, y1:t−1, u0:t )

efficiently.
In the case of CPHA, this probability can be expressed as

a sum over a finite number of terms, where each term is a
product of the probability Pr

α
(i)
t−1

[X j ] of a guard condition c j

being satisfied, and the corresponding transition probability pτ j
(10). The remaining challenge is to calculate Pr

α
(i)
t−1

[X j ]. Our

previous work showed how this can be carried out efficiently
for guard conditions that are single-variate intervals [8,18]. In
this section we show that this can be generalized to rectangular
and linear multi-variate guard conditions.

Multi-variate guard conditions are often needed to represent
more complex constraints on transitions than can be handled
by single-variate interval conditions. In general, the rectangular
multi-variate guard conditions will take the form

∧nx
i=1(xi ∈

[li , ui ]), where xi are distinct continuous state variables
in xc. Evaluating the probability of such a multi-variate
guard condition amounts to evaluating the multi-dimensional
(hyper)rectangular integral over a Gaussian distribution:

Pr
α

(i)
t

[X j ] ≈
1

(2π)nx /2|P(i)
t−1|

1/2

×

∫ ui1

li1

∫ ui2

li2

· · ·

∫ uin

lin

e−
1
2 (xc−x̂(i)

c,t−1)
TP(i)

t−1
−1

(xc−x̂(i)
c,t−1)dxc. (23)

Rectangular integrals over Gaussian distributions are evaluated
efficiently using numerical methods, such as those presented
in [38–40]. The method of [38] achieves errors of the order
of 10−5 with computation times of the order of 10−4 s for
integrals of dimension 5. This efficiency justifies the use of such
algorithms in a Rao–Blackwellisation scheme.

Sometimes, transition guards are best represented by a
linear combinations of continuous variables. For example, in
a two-tank system, the direction of the flow between the two
tanks depends on the heights in the two tanks. Hence, the
mode variable for the flow direction would be guarded by
the linear guards h1 − h2 > 0 and h1 − h2 < 0 (see
Fig. 14). While it would be possible to include h1 − h2 as a
derived state variable in the model, doing so would increase
the computational complexity of the Kalman Filter update
by one dimension, and would make the covariance matrix
singular. A singular covariance matrix prevents the Kalman
Filter update essential to the Rao–Blackwellised Particle Filter
from being carried out. Instead, we apply a linear transform
to the Gaussian distribution, thus reducing the computation to
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Fig. 14. Linear guard condition h2 < h1 over the Gaussian approximation of
the posterior density of h1 and h2.

an instance of the rectangular multi-variate integral in (23).
Suppose that the guard condition c is expressed as a conjunction
of clauses

∧nx
i=1 li < ai xc < ui , where ai is the vector

of guard coefficients that specify condition ci . Such guard
conditions correspond to a convex space that is formed as an
intersection of hyper-planes li < ai xc and ai xc < ui . Let
A ,

[
a1 a2 · · · anx

]T be the square matrix of the guard
coefficients and define z , Axc,t−1 as the derived vector with
nx elements. Then the guard condition c ,

∧nx
i=1 li < ai xc <

ui is equivalent to the guard condition
∧nx

i=1 li < zi < ui . The
probability of the guard condition c being satisfied can thus be
evaluated as an integral∫ u1

l1

∫ u2

l2
· · ·

∫ unx

ln
p(zt |x

(i)
d,0:t−1, y1:t−1, u0:t−1)dxc, (24)

over the rectangular region [l1, u1] × [l2, u2] × · · · × [lnx , unx ].
The covariance of z is given by AP(i)

t−1AT, and furthermore this

covariance is nonsingular as long as P(i)
t−1 is nonsingular and

A is nonsingular; we need consider only cases where this is
true.6 Note that this approach is restricted to the case where the
number of guard conditions is at most the same as the number
of continuous state variables nx .7

Therefore, the key result is that the linear guard conditions
can once again be evaluated as a rectangular integral over a
Gaussian distribution.

4.2. Polynomial transition distributions

The PHA formalism specifies a finite set of guarded transi-
tions between discrete modes, each with a constant transition
probability, given that the guard condition is satisfied. Hence
the transition distribution p(xd,t |x

(i)
d,t−1, xc,t−1, ut−1) is piece-

wise constant in xc,t−1 (Fig. 11). We now present a method for
calculating p(xd,t |x

(i)
d,0:t−1, y1:t−1, u0:t ), i.e. the transition prior,
6 A singular A matrix corresponds to the case where there are redundant
guard conditions, in which case an equivalent nonsingular A can be calculated.

7 A number of guard conditions greater than nx leads to a singular covariance
for z. Fewer guard conditions than nx is handled trivially by setting li = −∞

and ui = ∞ for unused guard conditions.
Fig. 15. Probability of transition into failed mode for a simple component as
a function of temperature. Below the safe temperature, Tsafe, there is a small
failure probability. Above this, the failure probability increases linearly until
Tcrit, at which point failure is guaranteed.

when the transition distribution p(xd,t |x
(i)
d,t−1, xc,t−1, ut−1) is

not piecewise constant. In particular, we show that the inte-
gral in (9) can be calculated efficiently when the transition dis-
tribution is described by a piecewise polynomial function of
arbitrary order, for transition distributions defined over a sin-
gle variable. An example of a piecewise polynomial transition
distribution is shown in Fig. 15. This contribution greatly ex-
pands the class of models about which our hybrid estimation
approaches can reason, since piecewise polynomial functions
of arbitrary order can approximate any piecewise smooth func-
tion to arbitrary accuracy.

For a transition distribution defined over a single variable
x in xc,t−1, meaning that, p(xd,t |x

(i)
d,t−1, xc,t−1, ut−1) =

p(xd,t |x
(i)
d,t−1, x, ut−1) the transition prior can be written as:

p(xd,t |x
(i)
d,0:t−1, y1:t−1, u0:t ) =

∫
x

p(xd,t |x
(i)
d,t−1, x, ut−1)

× p(x |x(i)
d,0:t−1, y1:t−1, u0:t−1)dx . (25)

As in Section 3.5 we approximate p(x |x(i)
d,0:t−1, y1:t−1,

u0:t−1) using a Gaussian distribution with mean µi and
covariance σi . As before, we assume the cumulative distribution
function D(c), given by (12), can be calculated efficiently.

If p(xd,t |x
(i)
d,t−1, x, ut−1) is piecewise constant in x , the

transition prior is evaluated using the method described in
Section 3.4. This requires the evaluation of D(c) at the
boundary values of every guard condition. Consider now
the case where the transition distribution is piecewise linear
in x :

p(xd,t |x
(i)
d,t−1, x, ut−1) = a0, j + a1, j x x ∈ X j . (26)

When calculating the transition prior in (25), the integral
can be split into a finite number of integrals of the following
form:∫

x
p(xd,t |x

(i)
d,t−1, x, ut−1)

× p(x |x(i)
d,0:t−1, y1:t−1, u0:t−1) dx

=
1

σi
√

2π

∑
j

∫
X j

(a0, j + a1, j x)e−(x−µi )
2/(2σ 2

i ) dx . (27)

The integral for each guard condition can be rewritten as:
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∫
X j

a1, j (x − µi )e−(x−µi )
2/(2σ 2

i ) dx

+

∫
X j

(a0, j + a1, jµi )e−(x−µi )
2/(2σ 2

i ) dx . (28)

We now use the result that the integral∫ u

l
(x − µi )e−(x−µi )

2/(2σ 2
i )dx =

[
−σ 2

i e−(x−µi )
2/2σ 2

i

]u

l
, (29)

can be calculated in closed form using a substitution of the form
v = (x − µi )

2. Assuming the guard region X j takes the form
x ∈ [l, u] this means the first term in (28) can be calculated
in closed form. The second term in (28) is an interval integral
over the Gaussian p.d.f. for x , and this is evaluated using the
cumulative distribution function D(c), as in (12). Hence for
linear transition functions, the transition prior can be calculated
efficiently.

We now generalize this result to piecewise polynomial
transition functions of the form:

p(xd,t |x
(i)
d,t−1, x, ut−1) =

n p∑
q=0

aq, j xq x ∈ X j , (30)

where n p is the order of the polynomial. The transition prior in
(25) can now be decomposed further, according to each term of
the polynomial:∫

x
p(xd,t |x

(i)
d,t−1, x, ut−1)

× p(x |x(i)
d,0:t−1, y1:t−1, u0:t−1) dx

=

∑
j

∑
i

∫
X j

aq, j x i p(x |x(i)
d,0:t−1, y1:t−1, u0:t−1) dx . (31)

The polynomial in (30) can be rewritten as:

n p∑
q=0

aq, j xq
=

n p∑
q=0

a′

q, j (x − µi )
q . (32)

The translated coefficients a′

q, j are calculated by comparing
coefficients in the polynomial (32) to give n p + 1 equations
of the form:

aq =

n p−q∑
s=0

(−µi )
s
(

s + q
q

)
a′

s+q q = 0, . . . , n p. (33)

These equations are solved quickly online by direct substitution
starting from q = n p and ending at q = 0.8 Using (32) the
transition prior (31) can be written as:∫

x
p(xd,t |x

(i)
d,t−1, x, ut−1)p(x |x(i)

d,0:t−1, y1:t−1, u0:t−1)dx

=

∑
j

∑
q

1

σi
√

2π

∫
X j

a′

q, j (x − µi )
qe−(x−µi )

2/(2σ 2
i ) dx . (34)
8 To see this, note that, for q = n p , the right hand side of (33) is exactly
a′

n p , making calculation of a′
n p trivial. For q = n p − 1, the right hand side of

(33) has only terms with a′
n p and a′

n p−1, allowing us to solve for a′
n p−1; this

process continues until q = 0.
By repeated integration by parts, the more general form of the
integral in (29),∫ u

l
(x − µi )

qe−(x−µi )
2/2σ 2

i dx

=

[
−σ 2

i (x − µi )
q−1e−(x−µi )

2/2σ 2
i

]u

l

+

∫ u

l
(q − 1)(x − µi )

q−2σ 2
i e−(x−µi )

2/2σ 2
i dx, (35)

can be reduced to a summation of closed form terms, plus
either the integral in (29), in the case of odd q, or the integral
in (12), in the case of even q. In the first case the integral
is evaluated entirely in closed form, while in the second case
the only non-closed form term is the integral over the p.d.f.,
which is evaluated using D(c). Furthermore, all of the terms
that cannot be evaluated in closed form are scaled versions of
the same integral over the p.d.f.; hence, D(c) needs only to be
evaluated at the boundaries of the regions X j .

Thus, for transition distributions over single variables,
the transition prior is calculated efficiently for transition
distributions that are piecewise polynomial. This contribution
greatly expands the class of models about which both
Rao–Blackwellised particle filtering and existing k-best
methods for CPHA can reason, since piecewise polynomial
functions of arbitrary order can approximate any piecewise
smooth function to arbitrary accuracy. Note that this approach
requires O(n3

p) simple operations and at most two single-
variate Gaussian c.d.f. table lookups for each region X j ; for
reasonably small n p this is far fewer operations than would be
required in evaluating (25) through direct numerical integration
to a suitable level of accuracy.9

5. Hybrid estimation using a mixed stochastic/greedy
method

5.1. A unified treatment of k-best enumeration and RBPF

Our objective, as stated in the introduction, is a
robust, memory efficient method for Gaussian filtering of
CPHA. Robustness is achieved by balancing exploration
with exploitation, while memory efficiency is achieved by
using a mixture-of-Gaussians representation. To this end,
Section 2.3 described our previous method for Hybrid
Estimation with CPHA based on greedy successor enumeration.
Section 3 described a new exploration method based on
Rao–Blackwellised Particle Filtering. These methods lend
themselves to unification, in that they represent the belief
state as a mixture of Gaussians, with each Gaussian
representing a mode trajectory xd,0:t , and in both methods
the continuous distribution, conditioned on each trajectory,
p(xc,t |xd,0:t , y1:t , u0:t ) may be approximated using a Kalman
9 While direct numerical integration would enable polynomial transition
distributions in multiple variables, the authors are not aware of any results
analogous to those used in the piecewise constant case (Section 4.1) that
enable efficient evaluation of such integrals for general piecewise polynomial
functions.
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(a) Failure detection with (a) k-best enumeration. (b) RBPF.

Fig. 16. In (a), the trajectories are shown ordered in terms of their posterior probability, with the most likely at the top. Trajectories below the dashed line are
discarded. The true mode trajectory is shown in bold. In (b), the question mark indicates that the generation of the successor corresponding to the true trajectory is
generated stochastically.
Filter. In addition, both methods use the same approach to
evaluating the transition prior p(xd,t |xd,0:t−1, y1:t−1, u0:t ) in
the presence of autonomous mode transitions.

Finally, both methods approximate the posterior belief state
by tracking only a subset of the reachable mode trajectories.
The key difference between the two methods is the approach
used to select which mode trajectories to track; k-best
enumeration greedily selects the k trajectories with the highest
posterior probability p(xd,0:t |y1:t , u0:t ), while RBPF uses
stochastic sampling. To gain insight into the relative behavior of
these two methods, and their appropriate combination, consider
the acrobatic robot introduced in Section 2. Suppose that the
robot does not carry a ball, and its actuator is functional,
up to time step tF , when a failure occurs. As illustrated in
Fig. 16(a), the k-best enumeration algorithm maintains the
nominal trajectory, and will detect the failure, as long as a
trajectory with the fault transition is among the set of leading
trajectories at (or near) the time when the actual fault occurs.
By contrast, with the RBPF, mode transitions are sampled
stochastically (Fig. 16(b)). Since the transition into the failure
state has a low prior, many particles will be needed in order to
detect the fault.

Now, consider a modified model, in which the probability
of catching a ball is 0.5, rather than 0.01. In addition, let
the mass of the ball be small, so that the effect of catching
a ball, on the observations, is relatively small. In this case,
the posterior distribution over the trajectories will be flat, as
there will be many trajectories in the belief state that oscillate
between the robot having and not having a ball. Initially, these
trajectories will have higher posterior probabilities than the
ground-truth trajectory, because they have much higher priors
than the failure, and it takes several time steps before the
evidence for the failure builds up. The RBPF, on the other
hand, will occasionally generate a fault sample even if there
are many alternative trajectories that have a higher posterior
probability. The fault trajectory may thus be present in the set
of trajectories despite having a lower posterior probability than
other candidate trajectories. This behavior makes the RBPF
more robust to local maxima.

However by representing the posterior probability p(xd,0:t |

y1:t , u0:t ) using the number of repeated particles, RBPF
introduces additional approximation and typically reduces the
number of distinct trajectories tracked at any time. This means
that for a relatively concentrated posterior, k-best enumeration
will typically outperform RBPF. These insights are validated
empirically in Section 6 using the simulated acrobatic robot.

These observations motivate the development of a new
algorithm that combines k-best enumeration and RBPF in a
greedy and stochastic search. In Section 5.2 we introduce
the new algorithm and show that it exploits the differences
between k-best enumeration and RBPF in order to increase the
robustness of the algorithm to changes in the variance of the
posterior distribution.

5.2. A novel combined greedy/stochastic algorithm

In this section we present a novel algorithm that combines
the greedy and stochastic approaches, of k-best enumeration
and RBPF respectively, to explore the discrete mode trajectories
of the system (Fig. 17). The algorithm maintains two sets
of trajectories: one set of stochastically generated trajectories,
updated with RBPF, and a separate set of leading trajectories,
enumerated according to their posterior probability. The key
idea is to generate successors to the leading k trajectories
through both previously deterministically generated successors
to the current k leading trajectories and the candidates
generated by the RBPF. In this manner, the true trajectory
that was discarded by simple k-best enumeration on the basis
of having a lower posterior probability than other trajectories
can still be tracked in the RBPF particle set and included in
the deterministic set at a later time. In Section 6 we show
empirically that the new algorithm is more robust than k-best
and RBPF taken individually, with only a minor performance
penalty.
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Fig. 17. Failure detection with our mixed method. At time tF the true trajectory
(bold line) is no longer among the trajectories with the k highest posteriors.
However, the true trajectory is sampled stochastically and becomes a member of
the RBPF particle set. At time tP+1, the posterior of the true trajectory becomes
large enough for it to be included in the leading k trajectories.

Fig. 18. Belief state update using greedy and stochastic search.

The combination of greedy and stochastic search introduces
two challenges. First, in order to enable the comparison of the
two sets of trajectories, based on the posterior probability, each
particle needs to be augmented with b(xd,0:t ), the posterior
probability of a mode sequence xd,0:t . This can be updated
with (4), by reusing the values PT and PO , computed in the
importance sampling step of the RBPF.

Second, trajectories generated by both greedy and stochastic
search must be combined to give the belief state maintained
by the mixed algorithm. Both techniques maintain a number
of trajectories and a Gaussian distribution over the continuous
state, conditioned on each trajectory xd,0:t . The belief state
representation in the new algorithm is a mixture of Gaussians,
obtained by summation over the k trajectories with the highest
b(xd,0:t ) from both RBPF and greedy successor enumeration.

The pseudocode for the resulting algorithm is shown in
Fig. 18. Part 2(b) of the algorithm implements an A* search for
the k successors with the highest posterior. As in Section 2.3,
partial paths in the search tree correspond to partial assignments
of modes to components. A goal candidate is one that has a full
assignment of modes, and for which the posterior probability
b(xd,0:t ) has been calculated. The two key additions to the
method in Section 2.3 are as follows:

(1) Addition of RBPF particles to search queue: In 2(a), the
RBPF update step is carried out as described in Section 3.7,
and the resulting particles are added to the search queue
as candidates. To ensure soundness of the A* search,
candidates are added with the unnormalized observation
function used by [41].

(2) Checking for uniqueness: Many identical candidates are
generated by RBPF and added to the search queue. The
set new kbest , however, holds unique trajectories. Part 2(b)
ensures that unique trajectories only are added to the set of
k best.

In the code shown, uniqueness is ensured by removing dupli-
cate candidates from the priority queue until a unique candidate
is found. This relies on the fact that identical candidates will be
neighbors in the priority queue. Alternatively, candidates can be
checked for uniqueness when they are pushed onto the queue.

We have therefore proposed a new algorithm that mixes
greedy and stochastic search in hybrid estimation. In Section 6
we show that this approach is more robust than k-best and
RBPF taken individually.

6. Simulation results

In this section we present three main contributions. First,
using individual estimation runs, we demonstrate empirically
the insight in Section 5.1, that both k-best enumeration
and Rao–Blackwellised Particle Filtering can perform poorly
depending on whether the posterior distribution is concentrated
in relatively few mode trajectories, or is flat across many.
Second, we perform a detailed empirical analysis of the relative
performance of k-best enumeration and RBPF that confirms this
result, and illustrates the need for our robust algorithm, which
balances the complementary approaches of greedy exploitation
and stochastic exploration. Finally, we demonstrate that the
new mixed algorithm is significantly more robust than either
approach alone. We do not compare the Rao–Blackwellised
approach with a standard particle filtering approach, since
this analysis has been carried out extensively by [13,21,42];
this analysis revealed that Rao–Blackwellisation increases the
efficiency of the particle filtering approach dramatically.

We consider the acrobatic robot introduced in Section 2 and
shown in Figs. 1 through 5. Recall that the goal of hybrid
estimation in this case is to filter out the acrobot’s hybrid state
from a sequence of noisy observations of θ2. We consider the
following three scenarios for hybrid estimation with the acrobot
model:

(1) In the nominal scenario, the robot remains in the nominal
mode 〈ball = no, actuator = ok〉 for the duration of the
experiment.
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Fig. 19. The evolution of θ1 (left) and θ2 (right) for the acrobot model scenarios.

Fig. 20. A single run for the ball capture scenario with concentrated posterior. Left: Maximum a posteriori (MAP) mode estimate computed by the
Rao–Blackwellised Particle Filter (rbpf) and the k-best filter (kbest). Right: probability of the correct diagnosis 〈ball = yes, actuator = ok〉 for t ≥ 1.3 s.
There is a delay between the ball transition and when it is identified as the most likely diagnosis because the posterior probability of the true mode trajectory builds
up only over time. The low probability of a transition to 〈ball = yes, actuator = no〉 biases the prior towards the 〈ball = no, actuator = ok〉 diagnosis.
(2) In the ball scenario, the robot captures a ball at time t =

1.3 s and keeps it for the rest of the experiment. Capturing
a ball increases the weight m2 at the end of the lower link
and changes the resulting trajectory, as shown in Fig. 19.

(3) In the failure scenario, the robot’s actuator breaks at t =

1.5. This event causes the actuator to stop exerting any
torque, and alters the robot’s trajectory, as shown in Fig. 19.

6.1. Individual estimation runs

In this section we present results for hybrid estimation with
the ball scenario and the failure scenario for single executions
of the k-best algorithm and the new Rao–Blackwellised Particle
Filter algorithm for CPHA.

6.1.1. Concentrated posterior
First, we examine the original acrobatic robot model, shown

in Figs. 2 and 5. In this model, the probability of a ball transition
is 0.01 and the probability of an actuator failure is 0.0005. Since
all transitions have low priors, the true posterior distribution
is concentrated in a relatively small number of discrete mode
trajectories. The mass of the ball is 4 kg, and each link has
mass 1 kg. The upper link has length 2 m and the lower link has
length 1 m. Sensor noise is modeled as additive white Gaussian
noise with standard deviation 0.04 rad. Additive Gaussian white
process noise with standard deviation 0.01 is applied to each
element of the state vector, with the noise for each state vector
element being uncorrelated with all other elements.

Fig. 20 shows the maximum a posteriori (MAP) estimate
of the discrete state by k-best and RBPF estimation filters
for the ball scenario, for a single simulation run with 100
tracked sequences. Both k-best and RBPF algorithms estimate
the MAP diagnosis correctly, and track the continuous state
closely, except for an uncertain area close to the transition.
Fig. 21 shows the tracking of θ1 for the ball scenario.

Figs. 22 and 23 show the results for a single simulation run
with the failure scenario. In this case the k-best algorithm is able
to diagnose the fault after a delay, but the Rao–Blackwellised
Particle Filter does not diagnose the correct mode, even after
several seconds. As described in Section 5.1, this is because
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Fig. 21. Filtered θ1 for an execution of the ball scenario.

the low prior of the fault transition makes it unlikely that the
true mode trajectory is sampled unless many more particles
are used. The true mode trajectory is therefore discarded. By
contrast, k-best enumeration is able to retain the true mode
sequence, since the posterior distribution is concentrated in
relatively few mode sequences.

6.1.2. Flat posterior
We now consider single simulation results for a modified

model, in which the posterior distribution is spread out across
many distinct mode trajectories. The modified acrobot model
has the same components as before, however the model
parameters are different. The new transition priors are shown
in Fig. 24. Note that the probability of the acrobot catching
a ball has changed from 0.05 to 0.5. Also, the mass of the
ball is decreased to 1 kg. All other parameters are unchanged.
The increased transition probability means that whenever θ1 ≥

0.55 the number of mode sequences with a high prior grows
exponentially. Because the effect of a transition on observations
is initially small, a large number of distinct trajectories will
have high posterior probability.
Fig. 22. A single run for the actuator failure scenario with concentrated posterior. Left: Maximum a posteriori (MAP) estimate computed by the RBPF and the
k-best filter. Right: probability of the correct diagnosis 〈ball = no, actuator = failed〉 for t ≥ 1.5 s. The k-best algorithm is able to diagnose the fault after a
delay; the probability assigned to the ground truth drops close to zero immediately after the fault, but gradually increases as the observations reveal that this is in
fact the most likely diagnosis. The RBPF algorithm fails to sample the true mode trajectory due to its low prior, and hence the probability of the ground truth falls
to zero and remains there.
Fig. 23. Filtered θ1 for an execution of the failure scenario with concentrated
posterior. The k-best algorithm significantly outperforms the RBPF algorithm.

Fig. 24. Probabilistic hybrid automata for the body and actuator of the modified
acrobot example.

The modified acrobot model is an example where the
fair sampling of the Rao–Blackwellised Particle Filter can
outperform the greedy search in the k-best filter, as discussed
in Section 5.1. Figs. 25 and 26 show the results for a single
hybrid estimation run on the failure scenario, this time with
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Fig. 25. A single run for the actuator failure scenario with flat posterior. Left: Maximum a posteriori (MAP) estimate computed by the RBPF and the k-best filter.
Right: probability of the correct diagnosis 〈ball = no, actuator = failed〉 for t ≥ 1.5 s.
Fig. 26. Continuous tracking of θ1 with the failure scenario for a flat posterior.
The RBPF has much more accurate continuous tracking than the k-best
algorithm for this example. The state variable θ1 is not observed directly, hence
without an accurate estimate of the discrete mode sequence, the continuous
dynamics of the system are unknown, leading to large estimation errors in the
continuous state.

the flat posterior distribution. The k-best enumeration approach
fails to diagnose the fault correctly because very many distinct
hypotheses with high posterior probability grow whenever the
ball transition is enabled. The stochastic sampling approach
of Rao–Blackwellised Particle Filtering, on the other hand,
samples the failure transition fairly. When a particle samples the
transition close to where it occurred in reality, the observation
likelihood of that particle grows until it dominates the trajectory
space, giving the correct diagnosis. Note that even at times
t ∈ [1.5, 2.0] when the RBPF diagnosis is uncertain, RBPF
determines that the mode is one of two approximately equally
likely values, one of which is the true mode. K -best, on the
other hand, assigns a probability of zero to the true mode.10
10 At such times the correct diagnosis could be considered to be ‘unknown
mode’. While the MAP error criterion used in this section does not reflect this,
the MAP criterion does give a better score to diagnoses that are uncertain, but
chatter between a set of modes containing the true value, than to diagnoses
that do not contain the true value. Hence the criterion is effective at comparing
relative performance.
With a flat posterior therefore, RBPF clearly outperforms k-best
enumeration.

These experimental results, therefore, provide empirical
validation of the insight described in Section 5.1. While these
are examples of single simulation runs only, in Section 6.2 we
carry out an extensive performance comparison that confirms
this result and provides empirical motivation for a mixed
method that balances greedy and stochastic approaches to
hybrid estimation.

6.2. Performance comparison

In this section we carry out a detailed empirical comparison
of the performance of k-best enumeration and the new
Rao–Blackwellised Particle Filter for CPHA. We show that
the new mixed method is significantly more robust than either
method alone.

6.2.1. Performance metrics
One of the biggest obstacles to evaluating the performance of

hybrid state estimation algorithms is that inference with hybrid
models is, in general, NP-hard [10], and it is very difficult
to obtain the true posterior distribution p(xc,t , xd,t |y1:t , u0:t ).
Sometimes, this distribution can be approximated by a particle
filter with a large number of samples; however, the accuracy of
such approximations may not be bounded tightly enough.

Instead, we use the following two metrics for a given
algorithm with a fixed number of tracked sequences:

(1) The percentage of the diagnostic faults, defined as
# of wrong diagnoses

# time steps . Wrong diagnoses are defined as MAP
estimates of the discrete state at the fringe that are not the
same as the ground truth.

(2) The mean square estimation error of the continuous
estimate corresponding to the MAP diagnosis. This is
defined as ((x̂c,t − xc,t )

T(x̂c,t − xc,t ))
1/2, where x̂c,t is

the continuous estimate corresponding to the MAP mode
estimate, and xc,t is the continuous state ground truth. This
measure is averaged over all time steps and experiments.

Each algorithm was run on 20 random observation
sequences with fixed mode assignments. The results given here
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Fig. 27. Performance for the nominal scenario. Left: Percentage of diagnostic errors. Right: Mean square estimation error of the continuous state.

Fig. 28. Performance for the ball scenario. Left: Percentage of diagnostic errors. Right: Mean square estimation error of the continuous state. The k-best algorithm
makes almost no diagnostic errors. The Rao–Blackwellised Particle Filter on the other hand, makes more than 40 per cent diagnostic errors on average for small k;
this decays to a minimum value as the number of tracked sequences increases. In addition, there is far greater variance in the case of the RBPF; in an application
such as fault diagnosis, this is particularly undesirable, since reliable performance is essential.
show the mean and standard deviation (shown as error bars) of
the performance metrics for these runs. For the mixed method,
half of the trajectories were evolved using the RBPF.

6.2.2. Concentrated posterior
Figs. 27 through 29 show the percentage of diagnostic errors

and the mean square tracking error for the three scenarios
considered for the acrobot model with concentrated posterior.

Overall, the Rao–Blackwellised Particle Filter gives a higher
number of diagnostic errors than k-best for the reasons
discussed in Section 5.1. The mixed method performs almost
as well as k-best enumeration. These results are the same when
we compare the performance with respect to the run time of the
algorithms. Fig. 30 shows this comparison. We found that the
run times of the three algorithms were different by a factor less
than 1.5.

6.2.3. Flat posterior
We now compare the performance of the k-best algorithm

and the RBPF when estimating the hybrid state of the modified
acrobot model, which has a flat posterior distribution. Fig. 31
shows the performance of the k-best and RBPF algorithms for
the failure scenario. In this case, the RBPF clearly outperforms
the k-best method both in terms of diagnostic errors and
mean square estimation error. The large number of sequences
with high posterior prevents the strict enumeration of the k-
best method from considering the initially less likely failure
sequence, except with very large k, while the RBPF samples
the actuator failure transition fairly. The mixed method exploits
this stochastic approach, performing only slightly worse than
the RBPF alone.

6.3. Discussion of results

In the experimental results an interesting pattern emerges:
the k-best algorithm undergoes a phase shift in performance,
depending on whether or not k is large enough for trajectories
similar to the ground truth to be tracked. By contrast,
the performance of the Rao–Blackwellised Particle Filter
converges less quickly than the k-best filter to a low
fraction of diagnostic errors (see Fig. 29). Since the RBPF
approximates the true posterior and duplicates high likelihood
hypotheses, increasing the number of particles simply makes
the approximation closer to the true posterior. Hence there is a
gradual convergence and not the phase shift seen for k-best.
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Fig. 29. Performance for the actuator failure scenario with concentrated posterior. Left: Percentage of diagnostic errors. Right: Mean square estimation error of the
continuous state. For small k, both RBPF and k-best have a high proportion of diagnostic errors; for k > 20, however, the k-best algorithm outperforms the RBPF.
Also, whereas the performance of the RBPF improves gradually as k increases, the k-best algorithm shows a large shift in performance between k = 20 and k = 50.
The mixed method behaves in a similar manner to k-best enumeration, except that the shift in performance occurs at approximately double the number of tracked
sequences, since only half of the sequences are being evolved greedily.

Fig. 30. Performance for the failure scenario for concentrated posterior with respect to run time. Left: Percentage of diagnostic errors. Right: Mean square estimation
error of the continuous state.

Fig. 31. Performance for the failure scenario with flat posterior. Left: Percentage of diagnostic errors. Right: Mean square estimation error of the continuous state.
The k-best method performs very poorly, except for a very large number of tracked sequences, while the RBPF performs well. The mixed method has similar
performance to the RBPF.
The critical value of k that greedy enumeration needs to
track in order to perform well, depends on the concentration
of the posterior distribution. If the posterior distribution is
concentrated in a relatively small number of distinct sequences
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the k-best method will perform well even for small k. In
these cases, k-best enumeration typically outperforms RBPF,
since it does not duplicate hypotheses, leading to unnecessary
approximation. For a flat posterior, on the other hand, the
critical value of k is so large when detecting rare events that
many trajectories will need to be tracked, to reliably detect the
fault. In these cases, the RBPF will perform better for small k,
since the distribution is sampled fairly.

We have shown, empirically, that the mixed method
combines the benefits of the two methods. While its
performance is marginally worse than the RBPF or k-best in
their best-case scenario, by balancing greedy and stochastic
search, the new method is much more robust to the choice of
model parameters than the RBPF and k-best individually.

7. Related work

Several algorithms have addressed the problem of hybrid
estimation in linear systems with Markovian mode transitions.
One class of solutions are multiple-model estimation schemes,
which maintain a pre-determined number of Gaussians. These
include the generalized pseudo-Bayesian algorithm (GPB) [43],
the Detection Estimation Algorithm (DEA) [44], the Interacting
Multiple Model (IMM) algorithm [29], and the residual
correlation Kalman filter bank [45]. [46] derived a number of
analytic results regarding the convergence of the IMM and
Kalman filter bank algorithms and proposed an extension,
based on these results, called the Residual-Mean Interacting
Multiple Model (RMIMM) algorithm. [30] proposed a k-best
filtering solution for SLDS models. In addition to pruning,
their algorithm implements several techniques not present in
our algorithm, including collapsing of the mode sequences,
smoothing, and weak decomposition. This approach was later
extended in [11], to the setting of hybrid dynamic Bayesian
networks with SoftMax transitions, using numerical integration
techniques instead of the Kalman Filter. As is the case with
our prior work in [5], their algorithm provides an any-time
solution to the hybrid state estimation problem and can handle
autonomous mode transitions. Later work by [47,48] also
considers autonomous mode transitions. In a similar manner
to [5], [47] propose a Monte Carlo approach to evaluating
the probability of guard satisfaction, while [48] propose an
analytic approach that can handle the special case of transition
distributions with Gaussian forms.

In the particle filtering community, several papers [14,49–
51] have proposed using the bootstrap particle filter to perform
state estimation in hybrid models. An early application of
the Rao–Blackwellisation method to reducing the variance
of sampling in SLDS models was introduced by [22].
Their algorithm, named the Random Sampling Algorithm
(RSA), sampled the sequences of mode assignments using
the distribution p(xd,t |xd,0:t−1, y1:t , u0:t ). [52,53] introduced
the Selection Step, which is crucial for the convergence of
sequential Monte Carlo methods and framed the problem
in the general particle filtering framework. In addition, they
proved several properties regarding the convergence and
variance reduction of Rao–Blackwellisation schemes. [49]
further extended this work and described an algorithm for fixed-
lag smoothing with MCMC steps. Finally, [13] introduced a
procedure, called one-step look-ahead, which computes the
total probability for the sequences stemming from a given
sample and moves the selection step before the importance
sampling step, at the cost of evaluating the Kalman Filter
residual for all successor modes. All of these techniques were
designed for linear switching models without autonomous
transitions.

Concurrently with our work published in [18], the
combination of a Rao–Blackwellised particle filter with an
Unscented Kalman Filter for fault detection was proposed
independently by [21]. In addition, they incorporated the look-
ahead step proposed by [13].

Two complementary approaches for improving the perfor-
mance of particle filters were proposed by [33,54]. The first
one, the Risk-sensitive Particle Filter, incorporates a model of
cost into the sampling process. The cost is implemented au-
tomatically using an MDP value function tracking. The sec-
ond approach improves the performance of particle filtering
by automatically choosing an appropriate level of abstraction
in a multiple-resolution hybrid model. Maintaining samples at
a lower resolution prevents hypotheses from being eliminated
due to a lack of samples.

Related work in the Artificial Intelligence community
includes [55,56]. [55] use Qualitative Reasoning techniques to
address the problem of hybrid estimation for systems that do
not have stochastic noise, and whose transitions are triggered by
exogenous events. [56] extended this work to consider systems
with stochastic noise, but again did not consider stochastic
jumps in the discrete state.

8. Conclusion

In this paper, we investigated the problem of estimating the
state of a system represented with probabilistic hybrid models.
We presented an efficient Rao–Blackwellised particle filtering
algorithm, developed in Section 3, that handles the autonomous
mode transitions, concurrency, and nonlinearities present in
Concurrent Probabilistic Hybrid Automata (CPHA). We ex-
tended the class of autonomous mode transitions that can be
handled by both k-best enumeration and Rao–Blackwellised
Particle Filtering for CPHA to multivariable linear transition
guards, in the case of piecewise constant transition distribu-
tions, and to polynomial transition distributions of arbitrary or-
der, in the case of single variables.

This new algorithm allows a unified treatment of approxi-
mate hybrid estimation through both Rao–Blackwellised par-
ticle filtering and k-best filtering. A simulated acrobatic robot
was used to develop insight about the relative performance of
the two approaches. The results showed that when the poste-
rior is concentrated in a few nominal or single-fault sequences,
the k-best filter is a clear winner. However, when the distribu-
tion over mode trajectories is relatively flat, the trajectory corre-
sponding to the correct diagnosis may be left out of the leading
set of mode sequences. In such situations, the random sampling
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Fig. A.1. Kullback–Liebler divergence between Kalman Filter based approximation and true distribution with autonomous mode transition.
11 For comparison, two Gaussians with identical variance but separated by
one standard deviation have a KL divergence of 0.5.
approach of the Rao–Blackwellised particle filter is more suc-
cessful.

We therefore developed a new algorithm that combines
greedy and stochastic search by tracking two sets of mode
trajectories with k-best and Rao–Blackwellised particle filters,
and uses both sets to generate the set of leading trajectories at
the next time step. Simulations showed that the algorithm is
more robust than k-best and RBPF taken individually, with only
a minor performance penalty.

Appendix A

A.1. Kalman Filter approximation error

In this section we investigate the error introduced by
autonomous mode transitions. Consider a simple system with
one continuous state variable and continuous dynamics given
by:

xc,t+1 = axc,t + vx,t . (A.1)

There are two modes, and at time t we are in Mode 1 with
probability 1. For Mode 1, a = 1, while for Mode 2, a = −1.
The distribution of xc,t is Gaussian with mean x̂c,t and variance
2. The variance of vx is 0.5. There are two guard conditions;
for vx > 10, we remain in Mode 1 with probability 1; for
vx ≤ 10, we transition to Mode 2 with probability P . When
P is close to zero, the discrete dynamics are unaffected by
satisfaction of the guard vx ≤ 10. When P is close to one,
guard satisfaction has a large effect on the discrete dynamics.
We have chosen this particular system for two reasons. First, the
autonomous mode transition introduces a severe nonlinearity;
if the state is just above 10, it remains there, while just below
10 it becomes −10 at the next time step. Note that the acrobot
model is much more benign in this sense, however we wish
to examine a ‘worst-case’ scenario for autonomous transitions.
Second, since the system is linear, we can analyze the error
introduced by autonomous mode transitions in isolation.

We now compare the true distribution p(xc,t+1|yc,0:t )

to the approximation generated using the Kalman Filter
approach employed in the RBPF algorithm. We determine
a close approximation to the true distribution using 107
non-Rao–Blackwellised particles, and calculate the sum-of-
Gaussians RBPF approximation using 100 particles. Fig. A.1
shows the Kullback–Liebler (KL) divergence (calculated
approximately using numerical integration) between the two
distributions as a function of x̂c,t and P . This plots show
that in the worst case, the KL divergence is significant, but
reasonable,11 and that as either the state mean moves away
from the guard condition, or the probability P decreases,
the KL divergence decreases to insignificant levels. In these
cases, while there is still significant error in the distribution
of xc,t+1 conditioned on a mode sequence having occurred,
the contribution of this conditional distribution to the marginal
distribution of xc,t , and hence the KL divergence, is small. Note
also that the error in the distribution analyzed here will reduce
as observations are incorporated. These results show that the
error introduced by autonomous mode transitions when using
Kalman Filter approximations is only large if the following
conditions hold. First, guard satisfaction must have a significant
effect on the discrete dynamics. For example, discrete mode
changes could be very likely if a guard is satisfied, and very
unlikely otherwise. Second, there must significant probability
mass either side of the guard threshold. In other words, the
expected continuous state must be close to the guard threshold.

We conclude, that, while in the worst case autonomous mode
transitions lead to large approximation errors, in most cases
the Kalman Filter approximation used in the new RBPF and
mixed algorithms is an effective approach that brings large
computational savings compared to standard Particle Filter
approaches. Furthermore, in Section 6 we show that the new
algorithms based on Kalman Filter approximations perform
well in terms of mean squared estimation error and MAP mode
estimation error for a number of scenarios.

A.2. Acrobot dynamic equations

Here we present the discretized dynamic equations of the
acrobot model in full. The state vector consists of the angular
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positions and velocities of the two joints:

x = [θ1 θ2 ω1 ω2]
T. (A.2)

The masses of the upper and lower links are given by m1
and m2, respectively. The lengths are given by l1 and l2,
respectively. The difference equations defining the system
dynamics are as follows:

θ1,t+1 = θ1,t + ω1,tδt + νθ1 (A.3)

θ2,t+1 = θ2,t + ω2,tδt + νθ2 (A.4)

ω1,t+1 = ω1,t + B1δt + νω1 (A.5)

ω2,t+1 = ω2,t + B2δt + νω2, (A.6)

where:

B1 = (T2 D12 − T1 D22 − ω2
1,t D122 D12 + ω2

2,t D122 D22

+ 2ω1,tω2,t D122(D22 − D12) + D22 D1

−D11 D2)/D3

B2 = −(T2 D11 − T1 D12 − ω2
1,t D122 D11 + ω2

2,t D122 D12

+ 2ω1,tω2,t D122(D12 − D11)

+ D12 D1 − D11 D2)/D3,

(A.7)

and νθ1, νθ2, νω1, νω2 are noise processes. The D terms in the
above equations are given by:

D1 = (m1 + m2)gl1 sin θ1,t + m2gl2 sin(θ1,t + θ2,t )

D2 = m2gl2 sin(θ1,t + θ2,t )

D3 = D2
12 − D11 D22

D11 = (m1 + m2)l
2
1 + m2l2

2 + 2m2l1l2 cos θ2,t

D22 = m2l2
2

D12 = m2l2
2 + m2l1l2 cos θ2,t

D122 = −m2l1l2 sin θ2,t .

(A.8)

T1 and T2 are the torques at each of the joints, which are given
by:

T1 = −ω1,t

T2 = −ω2,t + T,
(A.9)

where T is the torque applied by the actuator; this is zero if the
actuator has failed.
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