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Abstract

Techniques for robot monitoring and diagnosis have
been developed that perform state estimation using
probabilistic hybrid discrete/continuous models. Exact
inference in hybrid dynamic systems is, in general, in-
tractable. Approximate algorithms are based on either
1) greedy search, as in the case of k-best enumeration or
2) stochastic search, as in the case of Rao-Blackwellised
Particle Filtering (RBPF).

In this paper we propose a new method for hybrid state
estimation. The key insight is that stochastic and greedy
search methods, taken together, are often particularly
effective in practice. The new method combines the
stochastic methods of RBPF with the greedy search of
k-best in order to create a method that is effective for
a wider range of estimation problems than the individ-
ual methods alone. We demonstrate this robustness on
a simulated acrobatic robot, and show that this benefit
comes at only a small performance penalty.

Introduction

Robotic systems must be able to estimate their operational
state, which can evolve both continuously and discretely,
and is only partially observable. Probabilistic hybrid models
such as Probabilistic Hybrid Automata (Hofbaur & Williams
2002a) and hybrid dynamic Bayesian networks (Lerner et
al. 2000) are convenient modeling tools for robotic appli-
cations. Tasks such as robot monitoring and diagnosis can
often be framed as state estimation in hybrid models, by rep-
resenting the health of the system with discrete variables and
its dynamics with continuous ones.

In the general case inference in hybrid models is NP-hard
(Lerner & Parr 2001); nevertheless, approximate inference is
often feasible. The two predominant approaches to approx-
imate inference in dynamic hybrid models are greedy (k-
best) enumeration (Lerner et al. 2000; Hofbaur & Williams
2002a) and Rao-Blackwellised Particle Filtering (RBPF)
(Doucet et al. 2000; Morales-Menendez, de Freitas, & Poole
2002; Funiak & Williams 2003). Both these approaches are
based on the idea of representing the belief state by a mix-
ture of Gaussians for a subset of the trajectories traced by the
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discrete state. The former approach enumerates the trajecto-
ries in best-first order, while the latter evolves them through
sampling.

While prior work (Hutter & Dearden 2003) has compared
the performance of RBPF to other particle filters, there has
been little empirical comparison of RBPF and k-best meth-
ods. Such an analysis is crucial to understanding the trade-
offs between the two methods, and to developing a new ap-
proach that combines the strengths of both. In this paper
we carry out the comparison and show that both approaches
have limitations, depending on whether the posterior distri-
bution is concentrated in few discrete mode trajectories, or
is relatively flat across many different trajectories. These re-
sults demonstrate the need for a new algorithm that is robust
to changes in the variance of the approximated posterior dis-
tribution.

The key insight behind the new algorithm is that, in many
AI methods, a combination of stochastic and greedy search
methods can be effective in practice. This is analogous
to the ‘exploration vs. exploitation’ tradeoff, which has
been used with great success in Constraint Satisfaction Prob-
lems (CSP), for example. The new algorithm uses Rao-
Blackwellised particle filtering to generate, stochastically,
additional candidates for k-best enumeration that would not
have been tracked by a purely greedy approach. The algo-
rithm maintains a set of particles, which are updated using
RBPF, and a set of mode trajectories with the highest poste-
rior probability, generated by both RBPF and search-based
successor enumeration. This algorithm makes use of the
efficient properties of both k-best enumeration and RBPF,
while being probabilistically sound.

We demonstrate, using a simulated acrobatic robot, that
the mixed algorithm is effective for both a concentrated and
flat posterior distribution, showing a dramatic increase in ro-
bustness for a relatively small performance penalty.

Hybrid State Estimation

We consider the problem of estimating (filtering) the hid-
den state of dynamic systems, modeled as Concurrent Prob-
abilistic Hybrid Automata (CPHA). CPHA model the sys-
tem as a set of n concurrently operating Probabilistic Hybrid
Automata (PHA) that interact through continuous inputs and
outputs. The hidden state of each automaton k consists of a
discrete random process Xk

d and a set of continuous random

processes Xk
c . The state of the CPHA is observed indirectly
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through a continuous observation process Yc. Each discrete
state assignment (mode) Xk

d = xk
d is associated with a set

of algebraic equations FAE(xk
d) and difference equations

FDE(xk
d) that govern the continuous evolution of the au-

tomaton. Given a joint assignment Xd = xd to the discrete
state of all automata 1, . . . , n, the transition and observation
distributions for the continuous state of the overall CPHA,
Xc , ∪kX

k
c , are obtained by taking the union of equations

for the individual automata (Hofbaur & Williams 2002a),

n⋃

k=1

FAE(xk
d) ∪ FDE(xk

d). (1)

Under the assumption of Gaussian noise, this representation
leads to transition and observation distributions that take on
the form of a conditional non-linear Gaussian model

p(xc,t|xd,t,xc,t−1) = N (f(xc,t−1;xd,t), Σx,xd,t
)

p(yc,t|xd,t,xc,t) = N (g(xc,t;xd,t), Σy,xd,t
). (2)

The means of the transition and observation distributions
are given by the functions f(·;xd,t), g(·;xd,t), and the co-
variances are given by Σx,xd,t

, Σy,xd,t
. These are obtained

by symbolically solving the set of equations corresponding
to mode xd,t (Eq. 1).

The discrete evolution of the system is described by a
set of probabilistic transitions and the associated guards
over the continuous variables, see Fig. 2. Given this de-
scription, the discrete transition distribution for the CPHA,
p(xd,t|xd,t−1,xc,t−1), decomposes as a product of the tran-
sition distributions for the individual automata:

p(xd,t|xd,t−1,xc,t−1) =

n∏

k=1

p(xk
d,t|x

k
d,t−1,xc,t−1). (3)

The structure in the model can be exploited to compute the
transition model for the desired discrete assignments xd,t

on-line (Hofbaur & Williams 2002a) and aids in further de-
composition of the model (Hofbaur & Williams 2002b).

The goal of hybrid state estimation is to determine the
posterior distribution of the hidden (discrete and continuous)
state given all the observations so far, p(xd,t,xc,t|y1:t). This
distribution can be expressed as a sum of posterior distribu-
tions for all trajectories that end in state xd,t:

p(xd,t,xc,t|y1:t) =
∑

xd,1:t−1

p(xd,1:t,xc,t|y1:t). (4)

Each summand can be further expanded as a product of the
posterior probability of the discrete mode trajectory xd,1:t

and the posterior distribution of the continuous state, condi-
tioned on this mode trajectory:

p(xd,1:t,xc,t|y1:t) = p(xd,1:t|y1:t)p(xc,t|xd,1:t,y1:t). (5)

This decomposition leads to a natural representation of the
belief state as a mixture of Gaussians, one for each reachable
mode trajectory xd,1:t. Given xd,1:t, the second term can
be approximated as a Gaussian, using a combination of a
Kalman Filter and numerical integration techniques, such as
Gaussian Quadrature and Exact Monomials (Lerner 2002).

T

has-ball:

actuator: ok

failed

true

false

�

1

�

2

Figure 1: Schematic diagram of an acrobatic robot.
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Figure 2: Discrete transition model for an acrobatic robot. If
the actuator has failed, it exerts no torque. When the robot
catches the ball, ball=yes, and the mass of the lower link
increases.

The weight of each mixture component is then computed
using the belief state update (Funiak & Williams 2003)

p(xd,1:t|y1:t) = b(xd,1:t) ∝ PO · PT · b(xd,1:t−1). (6)

In this equation, PT , p(xd,t|xd,1:t−1,y1:t−1) is the
probability of transitioning to a state xd,t, given the

past mode trajectory and past observations, and PO ,

p(yt|xd,1:t,y1:t−1) is the measurement update. Both PT

and PO can be calculated approximately using efficient
methods described in (Hofbaur & Williams 2002a).

Failure Detection with k-best, RBPF

It is intractable to compute the probability in Eq. 5 for
all possible discrete mode trajectories, since their number
increases exponentially with time. A common approach

is to track only a subset of mode trajectories {x
(i)
d,1:t},

i = 1, . . . , K and the corresponding continuous estimates

p(xc,t|x
(i)
d,1:t,y1:t), and recursively evolve this set at each

time step. This approach is taken in both Rao-Blackwellised
particle filtering (RBPF) and k-best enumeration.

RBPF works by evolving the trajectories probabilistically.
At each time step, the filter evolves the samples according to
a proposal distribution, which is typically a tractable distri-
bution, such as PT or a product of PT and an approximation

to PO . Each sample i is then assigned a weight w
(i)
t that ad-

justs for the differences in the proposal and the value PT ·PO .
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Figure 3: Failure detection with k-best enumeration. In this
figure, the trajectories are shown ordered in terms of their
posterior probability, with the most likely at the top. Trajec-
tories below the dashed line are discarded. The true mode
trajectory is shown in bold.

Conditioned on the newly evolved state x
(i)
d,t, we update the

continuous state with a Kalman Filter, as discussed in the
previous section. The samples are periodically resampled
according to their weights, in order to multiply the fitting
samples and discard the unlikely ones.

The k-best filter (Hofbaur & Williams 2002a), on the
other hand, attempts to capture most of the probability space
by greedily expanding the trajectories with the highest pos-
terior probability b(xd,1:t). Given a set of trajectories, the
filter enumerates a set of successor trajectories in decreas-
ing order of posterior probability, exact up to the approxi-
mations in PT and PO and the normalization factor in the
belief state update. For CPHA, this enumeration can be
done efficiently, by expanding the trajectories component-
wise and upper-bounding the remaining probability, with a
combination of A* and branch-and-bound search (Hofbaur
& Williams 2002a).

To illustrate the algorithms, consider the model of an ac-
robatic robot in Figs. 1 and 2. The hidden continuous state
consists of four variables, representing the angles and an-
gular velocities at two joints. Only the angle of the middle
joint is observed, with additive Gaussian noise. The hid-
den discrete state consists of two variables, actuator and
ball, representing the health state of the robot’s actuator
and whether or not it carries a ball. These two discrete vari-
ables together determine the equations governing the evolu-
tion of the system, assuming that the weight of the ball is
known.

Suppose that the robot does not carry a ball, and its actu-
ator is functional, up to time step tF , when a failure occurs.
As illustrated in Fig. 3, the k-best enumeration algorithm
maintains the nominal trajectory, and will detect the failure,
as long as a trajectory with the fault transition is among the
set of leading trajectories at (or near) the time when the ac-
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Figure 4: Failure detection with RBPF. The question mark
indicates that the generation of the successor corresponding
to the true trajectory is generated stochastically.

tual fault occurs.1 By contrast, with the RBPF, mode transi-
tions are sampled stochastically (Fig. 4). For the true trajec-
tory to be tracked, the mode transition into the failure state
must be sampled. Since this transition has a low prior many
particles will be needed, in order to detect the fault.

Now, consider a modified model, in which the probability
of catching a ball is 0.5, rather than 0.01. In addition, let the
mass of the ball be small, so that the effect of catching a ball,
on the observations, is relatively small. In this case, the pos-
terior distribution over the trajectories will be flat, as there
will be many trajectories in the belief state that oscillate be-
tween the robot having and not having a ball. Initially, these
trajectories will have higher posterior probabilities than the
ground-truth trajectory, because they have much higher pri-
ors than the failure, and it takes several time steps before the
evidence for the failure builds up. The RBPF, on the other
hand, will occasionally generate a fault sample even if there
are many alternative trajectories that have a higher posterior
probability. The fault trajectory may thus be present in the
set of trajectories despite having a lower posterior probabil-
ity than other candidate trajectories. This behavior makes
the RBPF more robust to local maxima.

To summarize, the advantage of k-best enumeration is
that it stores the posterior probability of each trajectory ex-
actly, rather than approximating the probability by a number
of repeated particles. This observation has been noted in the
past (Lerner 2002). However, the ability of k-best enumera-
tion to track the true trajectory is critically dependent on the
number of alternative trajectories with high posteriors in re-
lation to the number of tracked trajectories k. In particular,
if the posterior distribution over the trajectories is flat, k-
best enumeration will not consider the right trajectory, and
the RBPF performs better. This observation motivates the
development of our algorithm that combines k-best enumer-
ation and RBPF in a greedy and stochastic search.

1It is insufficient to consider the fault transition several time
steps later, since at that time, continuous state tracking is no longer
accurate.
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Figure 5: Failure detection with our mixed method. At time
tF the true trajectory (bold line) is no longer among the tra-
jectories with the k highest posteriors. However, the true
trajectory is sampled stochastically and becomes a member
of the RBPF particle set. At time tP+1, the posterior of the
true trajectory becomes large enough for it to be included in
the leading k trajectories.

Hybrid Estimation using a Mixed

Stochastic/Greedy Method

Our proposed algorithm combines the greedy and stochas-
tic approaches, of k-best enumeration and RBPF respec-
tively, to explore the discrete mode trajectories of the sys-
tem (Fig. 5). The algorithm maintains two sets of trajecto-
ries: one set of stochastically generated trajectories, updated
with RBPF, and a separate set of leading trajectories, enu-
merated according to their posterior probability. The key
idea is to generate successors to the leading k trajectories
through both previously deterministically generated succes-
sors to the current k leading trajectories and the candidates
generated by the RBPF. In this manner, the true trajectory
that was discarded by simple k-best enumeration on the ba-
sis of having a lower posterior probability than other tra-
jectories can still be tracked in the RBPF particle set and
included in the deterministic set at a later time.

The combination of greedy and stochastic search intro-
duces two challenges. First, in order to enable the com-
parison of the two sets of trajectories, based on the poste-
rior probability, each particle needs to be augmented with
b(xd,1:t), the posterior probability of a mode sequence
xd,1:t. This can be updated with Eq. 6, by reusing the values
PT and PO , computed in the importance sampling step of
the RBPF.

Second, trajectories generated by both greedy and
stochastic search must be combined to give the belief state
maintained by the mixed algorithm. Both techniques main-
tain a number of trajectories and a Gaussian distribution over
the continuous state, conditioned on each trajectory xd,1:t.
The belief state representation in the new algorithm is a mix-
ture of Gaussians, obtained by summation over the k trajec-
tories with the highest b(xd,1:t) from both RBPF and greedy
successor enumeration.

1: rbpf candidates ← do rbpf update()

2: priority queue.push(rbpf candidates)

3: priority queue.push(kbest trajectories)

4: while size(new kbest < k) do

5: candidate← priority queue.pop()

6: if (is goal(candidate)) then

7: candidate← pop until unique(candidate)

8: new kbest.push(candidate)

9: else

10: new candidates← expand to successors(candidate)

11: priority queue.push(new candidates)

12: end if

13: end while

14: do normalization(new kbest)

Figure 6: Belief state update using greedy and stochastic
search.

The pseudocode for the resulting algorithm is shown in
Fig. 6. Lines 4 through 13 of the algorithm implement an A*
search for the k successors with the highest posterior. This
is similar to the method for k-best enumeration described
by (Hofbaur & Williams 2002a). The two key additions are
as follows:

1. Addition of RBPF particles to search queue: In line 1, the
RBPF update step is carried out as described by (Funiak
& Williams 2003), and the resulting particles are added
to the search queue as candidates in line 2. To ensure
soundness of the A* search, candidates are added with
the unnormalized observation function used by (Maybeck
& Stevens 1991).

2. Checking for uniqueness: Many identical candidates are
generated by RBPF and added to the search queue. The
set new kbest, however, holds unique trajectories. Line 7
ensures that unique trajectories only are added to the set
of k best.

In the code shown, line 7 ensures uniqueness by removing
duplicate candidates from the priority queue until a unique
candidate is found. This relies on the fact that identical
candidates will be neighbors in the priority queue. Alterna-
tively, candidates can be checked for uniqueness when they
are pushed onto the queue.

Experimental Results

We carried out experimental analysis with a range of estima-
tion scenarios; shown here are two examples that illustrate
the key results. We used the following two metrics:

1. The fraction of diagnostic faults, defined as
# wrong diagnoses

# time steps . Wrong diagnoses are defined as

estimates of the discrete state at the fringe that do not
correspond to the same discrete state as the ground truth.

2. The mean square estimation error (MSE) of the continu-
ous estimate corresponding to the MAP diagnosis. This is

defined as ((x̂c,t − xc,t)
T (x̂c,t − xc,t))

1/2, where x̂c,t is
the continuous estimate corresponding to the MAP diag-
nosis, and xc,t is the continuous state ground truth. This
measure is averaged over all time steps and experiments.
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Figure 7: Performance for the actuator failure scenario with
concentrated posterior.

Each algorithm was run on 20 random observation se-
quences with fixed mode assignments. The results given
here show the mean and standard deviation (shown as er-
ror bars) of the performance metrics for these runs. For the
mixed method, half of the trajectories were evolved using
the RBPF.

Concentrated Posterior

First, we examined the original acrobatic robot model,
shown in Fig. 1. In this model, the probability of a ball
transition is 0.01 and the probability of an actuator failure
is 0.0005. The mass of the ball is 4kg. Since all transi-
tions have low priors, the true posterior distribution is con-
centrated in a relatively small number of discrete mode tra-
jectories.

As shown in Fig. 7, the k-best algorithm clearly outper-
forms the RBPF in both performance metrics, except for
very small and very large k. There is also a qualitative dif-
ference in the convergence of each algorithm with increasing
k. Whereas the performance of the RBPF improves gradu-
ally as k increases, the k-best algorithm shows a large shift
in performance between k = 10 and k = 20. The mixed
method follows the behavior of the k-best algorithm, with
twice as many particles (since half of the trajectories are
evolved stochastically).

Flat Posterior

Second, we examined a modified model, in which the pos-
terior distribution was spread out among many distinct tra-
jectories. Specifically, we increased the ball transition prob-
abilities from 0.01 to 0.5 and increased the probability of a
failure to 0.01. In addition, the mass of the ball was reduced
to 1kg. Hence, whenever θ1 ≥ 0.55, many trajectories with
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Figure 8: Performance for the failure scenario with the flat
posterior.

relatively high priors exist, and because the effect of a tran-
sition on observations is initially small, a large number of
distinct trajectories will have high posterior probability.

Fig. 8 shows that in this case, the RBPF clearly outper-
forms the k-best method, both in terms of diagnostic er-
rors and mean square estimation error. The large number
of sequences with high posterior prevents the strict enumer-
ation of the k-best method from considering the initially less
likely failure sequence, except with very large k. The RBPF,
by contrast, samples the actuator failure transition fairly. If
a particle samples the transition close to where it occurred
in reality, the observation likelihood of that particle grows
until it dominates the trajectory space, giving the correct di-
agnosis. The behavior of the mixed method is similar to that
of the RBPF.

Discussion of Results

In the experimental results an interesting pattern emerges:
the k-best algorithm undergoes a phase shift in performance,
depending on whether or not k is large enough for trajecto-
ries similar to the ground truth to be tracked. The critical
value of k depends on the concentration of the posterior dis-
tribution. If the posterior distribution is concentrated in a
very small number of distinct sequences, the k-best method
will perform well even for small k. For a flat posterior, the
critical value of k is so large when detecting rare events that
many trajectories will need to be tracked, to reliably detect
the fault. In these cases, the RBPF will perform better for
small k, since the distribution is sampled fairly. The mixed
method combines the benefits of the two methods. While its
performance is marginally worse than the RBPF or k-best in
their best-case scenario, it is much more robust to the choice
of model parameters than the RBPF and k-best individually.
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Conclusion

This paper presented a new algorithm for approximate esti-
mation in probabilistic hybrid models. Our algorithm com-
bines greedy and stochastic search by tracking two sets of
trajectories with k-best and Rao-Blackwellised particle fil-
ters, and uses both sets to generate the set of leading trajec-
tories at the next time step. The algorithm is more robust
than k-best and RBPF taken individually, with only a minor
performance penalty.
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