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To increase the science return of future missions toMars and to enable sample return missions, the accuracy with

which a lander can be delivered to the Martian surface must be improved by orders of magnitude. The prior work

developed a convex-optimization-based minimum-fuel powered-descent guidance algorithm. In this paper, this

convex-optimization-based approach is extended to handle the casewhen no feasible trajectory to the target exists. In

this case, the objective is to generate the minimum-landing-error trajectory, which is the trajectory that minimizes

the distance to the prescribed target while using the available fuel optimally. This problem is inherently a nonconvex

optimal control problemdue to a nonzero lower boundon themagnitude of the feasible thrust vector. It isfirst proven

that an optimal solution of a convex relaxation of the problem is also optimal for the original nonconvex problem,

which is referred to as a lossless convexification of the original nonconvex problem. Then it is shown that the

minimum-landing-error trajectory generation problem canbe posed as a convex optimization problem and solved to

global optimality with known bounds on convergence time. This makes the approach amenable to onboard

implementation for real-time applications.

Nomenclature

c = vector component of cone constraint
D = constraint on distance-to-target in horizontal plane
e = unit vector normal to vector component of glide-slope

constraint
ei = vector of zeros with unity at index i
g = constant acceleration due to gravity
H��� = Hamiltonian
h��� = function defining glide-slope constraint
J�tf� = cost for minimum-landing-error guidance problem
M = number of basis functions
m�t� = lander mass
mdry = dry mass of lander
mwet = wet mass of lander
N = number of discrete time steps
pj = basis function coefficient for control variables
q = two-vector landing target in horizontal plane
r�t� = position of lander
_r�t� = velocity of lander
�r�t� = acceleration of lander
r0 = initial position of lander
_r0 = initial velocity of lander
S = matrix component of cone constraint
Tc�t� = thrust profile
t = time
tf = final time

tk = time at kth time step
u�t� = mass-normalized thrust profile
X = set of allowed lander positions
yk = state at time tk
z�t� = natural log of mass
z0�t� = lower bound on natural log of mass
� = constant of proportionality between thrust magnitude

and mass consumption
� = slack variable related to thrust magnitude
� = glide-slope constraint angle
�t = length of time step for discretization
� = normal to glide-slope constraint at contact point
� = costate jump condition constant
�k = matrix mapping constant disturbance to yk
� = costate vector
�1 = lower bound on thrust magnitude
�2 = upper bound on thrust magnitude
��t� = mass-normalized thrust-magnitude slack variable
� = time after contact with glide slope
�k = discrete state transition matrix over k time steps
	j�t� = basis function for control variables
�k = matrix mapping basis coefficients to yk
k � k = two-norm of a vector

I. Introduction

T HE science return of previous missions to the surface of Mars
has been limited by the accuracy with which a lander can be

delivered to the surface. Landing accuracy is characterized by the 3-
sigma landing ellipse, which defines the region around the target in
which landing can be guaranteed. The size of this ellipse (major axis)
was approximately 150 km forMars Pathfinder [1] and 35 km for the
Mars Exploration Rovers [2]. The 2009 Mars Science Laboratory
mission aims to achieve a landing ellipse of around 10 km [3]. This
means that landing site selection is driven by the need to find a safe
landing site, rather than by science goals. In other words, landing
sites must be large, flat, and relatively rock- and crater-free areas to
ensure safe landing [4]. These regions are usually not the sites with
the maximum science return. For example, in the recent Phoenix
mission, orbital images taken months before the landing showed a
higher-than-expected concentration of large rocks at the primary
landing site. This required a switch to an alternate landing site, which
may not have been necessary if a more accurate landing were
possible.
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Recent work has focused on achieving pinpoint landing, which
is defined as landing to within hundreds of meters of a target [5].
The pinpoint landing concept consists of an entry phase through the
Martian atmosphere, followed by parachute deployment. During the
parachute phase, errors accumulate due to winds and atmospheric
uncertainty. Once the parachute is released, the final powered-
descent phase then uses thrusters to land safely at the target. To do so,
the lander needs to calculate onboard a trajectory from its a priori
unknown location at parachute cutoff to the target. This powered-
descent guidance (PDG) problem is challenging for a number of
reasons. First, we must guarantee that any feasible solution obeys
hard constraints, including minimum and maximum thrust
magnitudes and a minimum glide-slope angle. The latter constraint
also prevents subsurface flight. Second, we must guarantee that if a
feasible solution exists, it will be found in a matter of seconds. This
requirement is derived from the duration of the parachute and PDG
phases; if the PDG algorithm takes too long to find a feasible
solution, the lander can crash into the surface. The algorithm should
find a globally optimal solution tomaximize the distance fromwhich
the lander can reach the target given the amount of onboard fuel.
Global optimality means that the system capability is limited only by
the physical design of the spacecraft. By contrast, a PDG algorithm
that finds only suboptimal or locally optimal solutions does not
achieve the full retargeting range of the spacecraft.

A great deal of prior work has developed approximate solutions to
the powered-descent guidance problem, including [3,6–12]. One of
these is our convex optimization approach [3], which poses the
problem of minimum-fuel powered-descent guidance as a second-
order cone program (SOCP). This optimization problem can be
solved in polynomial time using existing interior-point-method
algorithms [13–15] that have a deterministic stopping criterion given
a prescribed level of accuracy. That is, the global optimum can be
computed to any given accuracy with an a priori known upper bound
on the number of iterations required for convergence. In addition,
interior-point-method algorithms of SOCPs are guaranteed to find a
feasible solution if one exists [16]. This is in contrast with other
approaches that either compute a closed-form solution by ignoring
the constraints of the problem [8,17], propose solving a nonlinear
optimization onboard [9,10], or solve a related problem that does not
minimize fuel use [11]. The closed-form solution approach results in
solutions that do not obey the constraints inherent in the problem,
such as no subsurface flight constraints. This means that constraints
must be checked explicitly after a solution is generated, and any
solution that violates the constraints is rejected. In practice, this
reduces the size of the region from which return to the target is
possible by a factor of 10 or more [18]. Nonlinear optimization
approaches, on the other hand, cannot provide a priori guarantees on
how many iterations will be required to find a feasible trajectory and
are not guaranteed to find the global optimum. This limits their
relevance to onboard applications. For more extensive comparisons
of the convex optimization approach to alternative approaches, see
[12,18].

In this paper, we extend the convex optimization approach of [3] to
handle the case when no feasible trajectory to the target exists. If no
feasible trajectory to the target exists, the onboard guidance
algorithm must ensure that a safe landing occurs as close as possible
to the original target, if necessary, using all of the fuel available for
powered-descent guidance. In this paper, we present an algorithm
that solves this minimum-landing-error problem, which we define
formally in Problem 3. The algorithm calculates the minimum-fuel
trajectory to the target if one exists and calculates the trajectory that
minimizes the landing error if no solution to the target exists. In the
spirit of [3], our new approach poses the problem as two second-
order cone programs, which can be solved to global optimality with
known bounds on the number of iterations required. This minimum-
landing-error capability will be necessary for missions that want to
increase landing accuracy but cannot carry enough fuel to ensure that
the target can be reached in all possible scenarios. The capability
could also be used as a backup solution for missions that intend to
land at a specified target but encounter offnominal conditions that
prevent this from being possible.

The key difficulty in posing the minimum-landing-error problem
as a convex optimization problem is the presence of nonconvex
constraints: namely, the nonlinear system dynamics and the
nonconvex thrust constraints. The thrust constraints are nonconvex
because of a minimum-thrust-magnitude constraint, which arises
because, once started, the thrusters cannot be throttled belowa certain
level. In [3], we rendered the minimum-fuel guidance problem
convex by relaxing the nonconvex constraints and then proving that
any optimal solution of the relaxed problem is also an optimal
solution to the full nonconvex problem. We refer to this approach as
lossless convexification. The primary theoretic contribution of the
present paper is an analogous convexification for the minimum-
landing-error powered-descent guidance problem. We pose two
optimization problems inwhich the nonconvex constraints have been
relaxed to yield second-order cone programs. We solve these
problems sequentially and then provide a new analytic result that
shows that any optimal solution to the second relaxed problem is also
an optimal solution to the nonconvex minimum-landing-error
problem. Furthermore, we show that the solution uses the least fuel of
all the optimal solutions to the minimum-landing-error problem.

This paper is organized as follows: In Sec. II we review the convex
optimization approach of [3] to solving the minimum-fuel PDG
problem before defining the minimum-landing-error PDG problem
in Sec. III. In Sec. IV we present the new algorithm for minimum-
landing-error PDG, then present themain analytic result of the paper:
namely, the convexification of nonconvex control constraints.
Section V gives simulation results and Sec. VI presents our
conclusions.

II. Review of Minimum-Fuel Powered-
Descent Guidance

The minimum-fuel PDG problem consists of finding the thrust
profile Tc��� that takes the lander from an initial position r0 and an
initial velocity _r0 to rest at the prescribed target location, while
minimizing the fuel mass consumed in doing so. The minimum-fuel
PDG problem is defined formally in Problem 1. Throughout this
paper we use ei to denote a column vector of all zeros except the ith
row, which is unity.We use kxk to denote the two-norm of the vector
x. We define the vertical (surface normal) direction to be along the
vector e1 and let g be the constant acceleration vector due to gravity.

Problem 1 (nonconvex minimum-fuel guidance problem).

max
tf;Tc���

m�tf� �m�0� � min
tf ;Tc���

Z
tf

0

�kTc�t�k dt (1)

subject to

�r�t� � g� Tc�t�=m�t� _m�t� � ��kTc�t�k (2)

0< �1 � kTc�t�k � �2 (3)

r �t� 2 X 8 t 2 �0; tf	 (4)

m�0� �mwet; m�tf� 
 mdry (5)

r �0� � r0; _r�0� � _r0 (6)

e T1 r�tf� � 0; � e2 e3 	Tr�tf� � q; _r�tf� � 0 (7)

where q 2 R2 defines the location of the landing target on the
surface. We use X to define the set of feasible positions of the
spacecraft: namely, the glide-slope constraint,

X � fr 2 R3: kS�r � r�tf��k � cT�r � r�tf�� � 0g (8)

where S and c are defined by the user to specify a feasible conewith a
vertex at r�tf�:
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S≜ 0 1 0

0 0 1

� �
c≜

e1
tan �

� > 0 (9)

Here, � is the minimum glide-slope angle, illustrated in Fig. 1. The
glide-slope constraint (8) ensures that the trajectory to the target
cannot be too shallow and cannot go subsurface. X is a convex set
and, for completeness, we give the standard definition of the interior
of X:

intX≜ fx 2X: 9 "> 0 such that y 2X if kx� yk<"g (10)

The boundary of X is given by @X≜ fx 2 X: x =2 intXg.
Equation (5) defines the initial mass of the lander and ensures that

no more fuel is used than is available. Equation (6) defines the initial
position and velocity of the lander, and Eq. (7) constrains the lander
to be at rest at the target at the final time. Note also that the time of
flight tf is not fixed a priori, but is an optimization variable.

A key challenge in solving Problem 1 is the lower bound on the
thrust magnitude in Eq. (3), which means that the set of allowable
thrust values is nonconvex. This nonconvex control constraint
prevents the direct use of convex optimization techniques in solving
this problem. The key theoretical innovations of [3] are to relax these
nonconvex constraints to give the following problem and to show
that the optimal solution of this relaxed problem is also an optimal
solution of Problem 1.

Problem 2 (relaxed minimum-fuel guidance problem).

min
tf;Tc���;����

Z
tf

0

��t� dt (11)

subject to

�r�t� � g� Tc�t�=m�t� _m�t� � ����t� (12)

kTc�t�k � ��t� 0< �1 � ��t� � �2 (13)

r �t� 2 X 8 t 2 �0; tf 	 (14)

m�0� �mwet; m�tf� 
 mdry (15)

r �0� � r0; _r�0� � _r0 (16)

e T1 r�tf� � 0; � e2 e3 	Tr�tf� � q; _r�tf� � 0 (17)

Note that the nonconvex thrust constraints in Eq. (3) have been
replaced with convex set of constraints (13). In [3] we showed that
this constraint relaxation allows the discrete-time form of Problem 2
to be posed as a convex optimization problem. Furthermore, the
following lemma formally states that an optimal solution to the
relaxed minimum-fuel problem is also an optimal solution to the full
nonconvex minimum-fuel PDG problem.

Lemma 1. Let ft�f; T�c ���;�����g be an optimal solution to

Problem 2 such that the corresponding state trajectory r��t� is on
the boundary of the state constraints @X for, at most, one point
t 2 �0; t�f�.§ Then ft�f; T�c ���g is an optimal solution to Problem 1.

Proof: See the Appendix. □

The approach of [3] solves the nonconvex minimum-fuel PDG
problem by solving a relaxed convex version of the problem. The
convexification is lossless, in the sense that no part of the feasible
space of the original problem is removed in the convexification
process. The resulting optimization problem is a second-order cone

program, for which solution techniques exist that guarantee the
globally optimal solution can be found to a certain accuracy within a
deterministic number of iterations. However, if a feasible solution
does not exist, the optimization will simply report “infeasible,” even
though itmay still be possible to land safely at somedistance from the
original target. In the next sections, therefore, we extend the approach
of [3] to solve the minimum-landing-error problem.

III. Minimum-Landing-Error PDG
Problem Statement

The minimum-landing-error powered-descent guidance problem
consists of minimizing the final distance from the target subject to
nonconvex thrust-magnitude constraints and glide-slope constraints,
while ensuring that no more fuel mass is used than is available. The
problem is stated formally in Problem 3.

Problem 3 (nonconvex minimum-landing-error guidance
problem).

min
tf ;Tc���

kr�tf�k2 (18)

subject to

�r�t� � g� Tc�t�=m�t� _m�t� � ��kTc�t�k (19)

0< �1 � kTc�t�k � �2 (20)

r �t� 2 X 8 t 2 �0; tf	 (21)

m�0� �mwet; m�tf� 
 mdry (22)

r �0� � r0; _r�0� � _r0 (23)

r �tf�Te1 � 0; _r�tf� � 0 (24)

There are a number of key differences between this and the
minimum-fuel guidance problem (Problem 1). First, the cost in
Problem 3 is now the squared Euclidean distance from the target at
the final time. Minimizing the squared distance is equivalent to
minimizing the distance itself, since kr�tf�k 
 0 and x2 ismonotonic
for x 
 0. To simplify notation we have assumed that the target is at
zero,without loss of generality. Second, thefinal position is no longer
required to be at the goal as in Eq. (7). Instead, Eq. (24) constrains the
final altitude to be zero and the final velocity to be zero. Note that the
cone constraints in Eq. (8) are defined around the state at the final
time step and not around the origin. This definition allows a glide-
slope constraint to be imposed even in the case that it is not possible to
reach the target, as illustrated in Fig. 1.

Once again, the keydifficulty in solvingProblem3 is that the thrust
constraints (20) are nonconvex. The approach of [3] suggests that we
overcome this problem through a similar convexification of the thrust

Fig. 1 Glide-slope constraint in minimum-landing-error powered-

descent guidance problem. The glide-slope constraint requires the
spacecraft to remain in a cone defined by the minimum slope angle �. In
the minimum-landing-error case, the apex of the cone coincides with the

landed position of the spacecraft, rather than the original target.

§The state trajectory is on the boundary for, at most, one point if the
trajectory either does not touch the boundary at all or touches the boundary
instantaneously only once and does not remain on the boundary for a finite
period of time.
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constraints. Unfortunately, the result in Lemma 1 does not apply to
Problem 3. This means that we are not guaranteed that an optimal
solution to a convexified relaxation of the minimum-landing-error
problem is an optimal solution to the minimum-landing-error
problem. In Sec. IV we therefore propose a new convexification for
minimum-landing-error powered-descent guidance.

IV. Minimum-Landing-Error Powered-Descent
Guidance Algorithm

A. Algorithm Description

In this section, we describe the main algorithm for the solution of
the minimum-landing-error powered-descent problem (Problem 3).
The key idea is to perform a prioritized optimization such that first,
the distance between the prescribed target and the achievable landing
location is minimized by solving Problem 4. Then a minimum-fuel
trajectory achieving this minimum-landing-error is generated by
solving Problem5. This approach ensures that the resulting trajectory
satisfies nonconvex thrust constraints and returns the globally
optimal solution to Problem 3 if one exists. The new algorithm is
given in Algorithm 1.

Problem 4 (relaxed minimum-landing-error guidance problem).

min
tf ;Tc���;����

kr�tf�k2 (25)

subject to

�r�t� � g� Tc�t�=m�t� _m�t� � ����t� (26)

kTc�t�k � ��t� 0< �1 � ��t� � �2 (27)

r �t� 2 X 8 t 2 �0; tf 	 (28)

m�0� �mwet; m�tf� 
 mdry (29)

r �0� � r0; _r�0� � _r0 (30)

r �tf�Te1 � 0; _r�tf� � 0 (31)

Problem 5 (relaxed minimum-fuel guidance problem to specified
range).

min
tf;Tc���;����

Z
tf

0

��t� dt (32)

subject to

�r�t� � g� Tc�t�=m�t� _m�t� � ����t� (33)

kTc�t�k � ��t� 0< �1 � ��t� � �2 (34)

r �t� 2 X 8 t 2 �0; tf 	 (35)

m�0� �mwet; m�tf� 
 mdry (36)

r �0� � r0; _r�0� � _r0 (37)

r �tf�Te1 � 0; kr�tf�k � D; _r�tf� � 0 (38)

To generate Problem 4 we relaxed the nonconvex thrust
constraints of the original minimum-landing-error problem stated
in Problem 3. This relaxation is performed in the same manner that
the minimum-fuel PDG problem is relaxed from Problem 1 to
Problem 2. Since the relaxed minimum-landing-error problem
(Problem 4) has convex inequality constraints on the state as well as
on the controls, it can be solved with existing solvers. However,
unlike minimum-fuel PDG, in which an optimal solution to the
relaxed Problem 2 is also an optimal feasible solution to Problem 1,
an optimal solution to the relaxed minimum-landing-error problem
(Problem 4) is not necessarily an optimal feasible solution to the
original minimum-landing-error problem, Problem 3. This is
because the convexification proof provided in [3] does not hold for
the minimum-landing-error problem. In particular, since the cost is
landing error rather than fuel, the structure of the Hamiltonian in the
resulting optimal control problem is different. Hence, another step is
needed to ensure that the nonconvex thrust constraints are satisfied.
This step consists of solving Problem 5, which also has relaxed
constraints. However, since Problem 5 minimizes fuel use, we can
use the result of Lemma 1 to prove that the solution to Problem 5will
satisfy the nonconvex thrust constraints of Problem 3. We will show
in Sec. IV.B that the solution to Problem 5 is the optimal solution to
Problem 3 and that it uses the minimum possible fuel of all optimal
solutions to Problem 3.

To solve Problems 4 and 5 in practice, three additional steps are
required: first, a change of variables to remove the nonlinear (and
hence nonconvex) dynamic constraints; second, a discretization in
time; and third, a line search for the optimal time offlight t�f . For these
steps, we use an identical approach to that in [3], which we review in
Secs. IV.C–IV.E.

B. Analytic Convexification Results

In this section, we provide two necessary lemmas before proving
the main convexification result, which is given in Theorem 1.

Lemma 2. Assume that an optimal solution to Problem 5 exists,
which we denote as ft5f; T5

c���;�5���g, which has the corresponding

trajectory r5��� that is on the boundary @X for, at most, one point
t 2 �0; t5f�. Then ft5f; T5

c���g is a feasible solution to Problem 1 with

q� � e2 e3 	Tr5�t5f�.
Proof: We first claim that ft5f; T5

c���;�5���g is an optimal solution

to Problem 2 with q� � e2 e3 	Tr5�t5f�. The proof of this claim is

by contradiction. Let us assume that there exists a solution
ft�f; T�c ���;�����g that satisfies the constraints of Problem 2 with

q� � e2 e3 	Tr5�t5f� but that also hasZ
t�
f

0

���t� dt <
Z
t5
f

0

���t� dt (39)

Comparing constraints, we see that ft�f; T�c ���;�����g is a feasible

solution to Problem 5. Hence, ft�f; T�c ���;����g is a feasible solution
with lower cost than the optimal solution ft5f; T5

c���;�5���g, which
leads to a contradiction. Hence, ft5f; T5

c���;�5���g is an optimal

solution to Problem 2 with q� � e2 e3 	Tr5�t5f�. Since r5�t� is on
the boundary @X for, at most, once in the interval �0; t5f�, then by

Lemma 1, ft5f; T5
c ���g is a feasible solution to Problem 1 with

q� � e2 e3 	Tr5�t5f�.
Lemma 3. Assume that an optimal solution to Problem 4 exists,

which we denote as ft4f; T4
c���;�4���g with corresponding trajectory

r4���. Then there exists a feasible optimal solution to Problem 5 with
D� kr4�t4f�k, which we denote as ft5f; T5

c���;�5���g with

corresponding trajectory r5���. Assume further that this trajectory
is on the boundary @X for, at most, one point t 2 �0; t5f�. Then
ft5f; T5

c���g is a feasible optimal solution to Problem 3. Furthermore,

Algorithm 1 Prioritized powered-descent guidance algorithm

1) Solve the relaxed minimum-landing-error guidance problem
(Problem 4) for ft�f; T�c ���;�����g with corresponding trajectory

r����. If no solution exists, return infeasible.
2) Solve the relaxed minimum-fuel guidance problem to specified range

(Problem 5) with D� kr�t�f�k for ft†f; T†
c ���;�†���g.

3) Return ft†f; T†
c ���g.
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ft5f; T5
c���g uses the minimum possible fuel of all optimal solutions to

Problem 3.
Proof: First, note that ft4f; T4

c���;�4���g is a feasible solution to

Problem 5 withD� kr4�t4f�k, since the only additional constraint in
Problem 5 is kr�tf�k � D and, by design, we have D� kr4�t4f�k.
Hence, a feasible solution to Problem 5 exists for D� kr4�t4f�k.
Solving this problem, we obtain ft5f; T5

c���;�5���g, and from

Lemma 2, we know that ft5f; T5
c���g is a feasible solution to Problem 1

for q� � e2 e3 	Tr5�t5f�. By comparing constraints, we see that any

feasible solution to Problem 1 is a feasible solution to Problem 3.
Hence, ft5f; T5

c���g is a feasible solution to Problem 3. Thismeans that

kr5�t5f�k 
 kr3�t3f�k (40)

where r3��� denotes the trajectory corresponding to the optimal
solution to Problem 3. Since Problem 4 is a relaxation of Problem 3,
we know that kr4�t4f�k � kr3�t3f�k. Since in Problem 5 we have

assignedD� kr4�t4f�k, we also know that kr5�t5f�k � kr4�t4f�k, and
hence

kr5�t5f�k � kr3�t3f�k (41)

Combining Eqs. (40) and (41), we have kr5�t5f�k � kr3�t3f�k.
Hence, the landing error in the optimal solution to Problem 5 is the
same as that in a globally optimal solution to Problem 3. We have
already shown that ft5f; T5

c���g is a feasible solution to Problem 3.As a

result, ft5f; T5
c���g is an optimal solution to Problem 3.

We now show that ft5f; T5
c ���g uses theminimumpossible fuel of all

optimal solutions to Problem 3. We know that ft5f; T5
c���g is an

optimal solution to Problem 3. Therefore, all optimal solutions to
Problem 3 have kr�tf�k � kr5�t5f�k � kr4�t4f�k. The proof is by

contradiction. Assume that there exists an optimal solution

ft†f; T†
c���g to Problem 3 with corresponding trajectory r†��� that also

has Z
t†
f

0

kT†
c�t�k dt <

Z
t5
f

0

kT5
c�t�k dt (42)

Comparing constraints, since kr†�t†f�k � kr4�t4f�k, we know that

ft†f; T†
c���;�†���g with �†��� � kT†

c���k is also a feasible solution to

Problem 5 withD� kr4�t4f�k. From Eq. (42) this solution has lower

cost than ft5f; T5
c���g. This leads to a contradiction, since ft5f;

T5
c���;�5���g is the optimal solution to Problem 5withD� kr4�t4f�k.

Hence, there is no optimal solution to Problem 3 that uses less fuel
than ft5f; T5

c���g □.

The following theorem is the main result of this paper and it
follows from Lemmas 1 through 3.

Theorem 1. If a solution to the nonconvexminimum-landing-error
guidance problem (Problem 3) exists, then the prioritized powered-

descent guidance algorithm returns a solution ft†f; T†
c���g with

trajectory r†���. If this trajectory is on the boundary of the state

constraints @X for, at most, one point t 2 �0; t†f�, then it is an optimal

solution to Problem 3. Furthermore, the returned solution uses the
minimal fuel among all optimal solutions of Problem 3.

Proof: Since Problem 4 is a relaxation of Problem 3, we know that
if there is a feasible solution to Problem 3, there exists a feasible
solution to Problem 4, and the prioritized powered-descent guidance
will not return infeasible. Then from Lemma 3 we know that

ft†f; T†
c���g is an optimal solution to Problem 3 and that this solution

uses the least fuel of all optimal solutions to Problem 3. □

Note that Theorem 1 implies that the prioritized powered-descent
guidance algorithm returns infeasible only if no solution to the
nonconvex minimum-landing-error guidance problem (Problem 3)
exists. Hence, the convexification approach is lossless, in the sense
that no part of the feasible region of the original problem is removed
by convexifying the nonconvex constraints.

Remark 1. As with the minimum-fuel powered-descent guidance
problem, we have observed that for Mars landing, all the optimal

trajectories that are generated via solving the relaxed minimum-fuel
guidance problem to specified range touch the boundary of the
feasible state region at one point, at most. Hence, the prioritized
powered-descent guidance algorithm has always returned optimal
solutions to the original nonconvexminimum-landing-error problem
for Mars powered-descent guidance. This includes an extensive
empirical investigation across the space of feasible initial conditions
and system parameters.

Remark 2. Observe that in step 1 of the prioritized powered-
descent guidance algorithm, we do not necessarily obtain a fuel-
optimal solution, but step 2 ensures that a fuel-optimal solution is
found. In this way, the two-step approach is a way of prioritizing a
multi-objective optimization problem. This approach is different
from the more typical regularization procedure in which both
distance and fuel costs are combined in a single cost function to
ensure that a single optimal solution exists. The prioritization
approach removes two of the key problems associated with
regularization. First, regularization requires that the relative weights
on fuel and distance are chosen, which is usually carried out in an
ad hoc manner. Second, regularized solutions do not necessarily
make physical sense. Our approach removes this ambiguity from the
problem description and obtains a physically meaningful solution.

C. Change of Variables

We use the following change of variables to remove the nonlinear
state dynamics (26):

� ≜
�

m
u≜

Tc
m

z≜ ln m (43)

Equation (26) can then be rewritten as

�r�t� � u�t� � g (44)

_z� _m�t�
m�t� � ����t� (45)

The change of variables therefore yields a set of linear equations for
the state dynamics. The control constraints, however, are no longer
convex. These are now given by

ku�t�k � ��t� 8 t 2 �0; tf	 (46)

�1e
�z�t� � ��t� � �2e�z�t� 8 t 2 �0; tf	 (47)

As in [3], we use a second-order-cone approximation of the
inequalities in Eq. (47) that can be readily incorporated into the
SOCP solution framework, given by

�1e
�z0
�
1 � �z�t� � z0�t�� �

�z�t� � z0�t��2
2

�
� ��t�

� �2e�z0 �1 � �z�t� � z0�t��	 8 t 2 �0; tf	 (48)

where

z0�t� � ln �mwet � ��2t� (49)

and mwet is the initial mass of the spacecraft. An approximation of
Problem 4 can now be expressed in terms of the new control
variables:

Problem 6 (relaxed minimum-landing-error problem with
changed variables).

min
tf;Tc���;����

kr�tf�k2 (50)

subject to

�r�t� � g� u�t� _z�t� � ����t� (51)

ku�t�k � ��t� (52)
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�1e
�z0�t�

�
1 � �z�t� � z0�t�� �

�z�t� � z0�t��2
2

�
� ��t�

� �2e�z0�t��1 � �z�t� � z0�t��	 (53)

r �t� 2 X 8 t 2 �0; tf 	 (54)

m�0� �mwet; m�tf� 
 mdry (55)

r �0� � r0; _r�0� � _r0 (56)

r �tf�Te1 � 0; _r�tf� � 0 (57)

Problem 6 is an approximation of the relaxed minimum-landing-
error PDG problem (Problem 4) in which the nonlinear equality
constraints have been eliminated. Furthermore, [3] shows that the
approximation of the inequalities in Eq. (47) given by Eq. (48) is
generally very accurate for both parts of the inequality and derives an
analytic upper bound on the approximation error.

D. Time Discretization

We now discretize Problem 6 to convert the infinite-dimensional
optimization problem to a finite-dimensional one by discretizing the
time domain into equal time intervals and imposing the constraints
at edges of the time steps, which we refer to as temporal nodes.
Since the constraints are linear or second-order-cone constraints, the
resulting problem is a finite-dimensional SOCP problem that can be
efficiently solved by readily available algorithms [13–15]. We use
the same approach as in [3] and refer the reader to this paper for
more details.

For any given time interval �0; tf	 and time increment �t, the
temporal nodes are given as

tk � k�t k� 0; . . . ; N

where N�t� tf . Define a vector of parameters as


�
p0

..

.

pM

2
64

3
75 (58)

where pj 2 R4. We describe the control input u and � in terms
of these parameters and some prescribed basis functions
	1���; . . . ; 	M���:

u�t�
��t�

� �
�
XM
j�0

pj	j�t� t 2 �0; tf 	 (59)

Then the solution of the differential equations (44) and (45) at the
temporal nodes and the control inputs at the temporal nodes can be
expressed in terms of these coefficients:

y k ≜
r�tk�
_r�tk�
z�tk�

" #
��k

r0
_r0

ln mwet

" #
��k

g
0

� �
��k


k� 1; . . . ; N
(60)

uk
�k

� �
≜ u�tk�

��tk�

� �
� �k
 k� 1; . . . ; N (61)

where �k, �k, �k, and �k are matrix functions of the time index k
determined by the basis functions chosen. In this paper, we use
piecewise linear basis functions withM� N, such that

	j�t� �

8<
:

tj�t
�t

when t 2 �tj�1; tj�
t�tj
�t

when t 2 �tj; tj�1�
0 otherwise

(62)

This corresponds to first-order hold discretization of a linear time-
invariant system for the dynamics of the spacecraft [Eqs. (44) and
(45)], with the vector � r�tk�T; _r�tk�T; z�tk�T 	T as the state.
Explicit expressions for �k, �k, �k, and �k can be obtained using
standard techniques; we do not repeat this derivation here, but refer
the interested reader to [19]. Now, with the following additional
notation, Problem 7 describes the discretized version of Problem 6:

E� � I3�3 03�4 	 F� �01�6 1 	 Eu� � I3�3 03�1 	
Ev� �03�3 I3�3 03�1 	 (63)

Problem 7 (discretized relaxed minimum-landing-error guidance
problem).

min
N;

kEyNk2 (64)

subject to

kEu�k
k � eT4�k
 k� 0; . . . ; N (65)

�1e
�z0�tk�

�
1 � �Fyk � z0�tk�� �

�Fyk � z0�tk��2
2

�
� eT4�k


� �2e�z0�tk��1 � �Fyk � z0�tk��	 (66)

Eyk 2 X k� 1; . . . ; N (67)

FyN 
 ln mdry (68)

y TNe1 � 0; Evy
T
N � 0 (69)

y k ��k

r0
_r0

ln mwet

" #
��k

g
0

� �
��k
 k� 1; . . . ; N (70)

Note that for any given N, Problem 7 defines a finite-dimensional
SOCP, which can be solved very efficiently with guaranteed
convergence to the globally optimal solution by using existing SOCP
algorithms [14,16,20]. Here, N describes the time of flight since
tf � N�t. It remains to find the optimal time of flight, which we
achieve using a line search.

E. Time-of-Flight Search

For minimum-fuel powered-descent guidance, [3] uses a line
search to find the optimal time of flight t�f . In this section, we apply
this approach to the minimum-landing-error guidance problem.
Extending [3], [21] uses a golden search technique (page 726 in [22],
which ensures that the interval in which the optimal value is known
to lie shrinks by the same constant proportion at each iteration. The
technique relies, however, on two key properties of J�tf�: the optimal
cost of Problem 3 as a function of tf , that is,

J�tf� � min
Tc���;����

kr�tf�k2 (71)

subject to Eqs. (19–24). First, wemust know an interval inwhich t�f is
known to lie. That is, we must find bounds tl and tu such that
tl � t�f � tu. Second, J�tf�must be unimodal (page 726 in [22] for a

definition of unimodal functions).
In [21] the authors solve the one-dimensional powered-descent

guidance problem using the approach of [6] to obtainvalues for tl and
tu. In the case of minimum-landing-error guidance, we can use the
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same approach to obtain tl. The approach of [21] for obtaining tu
does not, however, extend to the minimum-landing-error case.
Instead, we use a heuristic scaling to set tu � kscaletl, where kscale is on
the order of 3. Then, assuming unimodality of J�tf�, the golden
search approach checks analytically whether tu is a true upper bound.
If not, tu is increased until it is an upper bound on t�f .

In [21] the authors observed experimentally that J�tf� is indeed a
unimodal function. Since the present paper is concerned with the
minimum-landing-error problem, this conclusion does not carry over
from the minimum-fuel case. In Sec. V.B we show experimentally
that J�tf� is unimodal and that the golden search approach finds t�f to
within a few percent.

V. Simulation Results

In this section, we present simulation results obtained using the
new algorithm. The second-order-cone programs were solved using
G-OPT, a Jet Propulsion Laboratory in-house convex optimizer.
Simulations were run on a MacBook Pro 2.4 GHz with 4 GB RAM.
In Sec. V.A we present some example solutions generated by the
new approach, and in Sec. V.B we empirically demonstrate the
unimodality of the optimal solution with respect to the time of flight.

A. Example Solutions

We first consider a case when the target can be reached given the
available fuel, then a case when the target cannot be reached. The
spacecraft parameters for these simulations are

g� ��3:7114 m=s2 0 0 	T mdry � 1505 kg

mwet � 1905 kg �� 4:53 � 10�4 s=m �1 � 4972N

�2 � 13260N (72)

A glide-slope constraint is used to prevent the trajectory from
descending at an angle shallower than 4. The spacecraft initial
position is given by

r 0 �
1500 m

500 m

2000 m

2
4

3
5 (73)

In case 1, the initial velocity is denoted _r�1�0 and is given by

_r �1�0 �
�75 m=s

0

100 m=s

2
4

3
5 (74)

In Figs. 2 we show results generated for case 1 using the new
prioritized minimum-landing-error PDG approach (Algorithm 1)
with 55 time-discretization points. Golden search was terminated
when the optimal time of flight was known to within an interval of
3.0 s. In this case, there exists a feasible trajectory to the target, so
the algorithm returns the minimum-fuel solution to the target. This
solution requires 399.4 kg of fuel and has t�f � 78:4 s. The total

computation time required was 14.3 s, and 23 iterations of golden
search were used. Note that almost all of the available fuel was
required to reach the target. This example illustrates the value of the
convex optimization, which guarantees finding a solution if one
exists; even cases at the edge of the physical capabilities of the
spacecraft can be solved.

In case 2, there is an additional initial velocity in the y direction:

_r �2�0 �
�75 m=s
40 m=s
100 m=s

" #
(75)

Since case 1 used almost all of the available fuel, and case 2 has an
initial velocity in the y direction away from the target, it is most likely
that therewill be insufficient fuel to reach the target.Weverify this by
attempting to solve the minimum-fuel PDG problem using the
algorithm of [3], which reports that the problem is infeasible and that
at least 414 kg of fuel is required to reach the target. The minimum-
landing-error targeting algorithm, however, finds a solution that
ensures safe landing at a distance of 404 m from the target. The
solution, shown in Fig. 3, has t�f � 77:7 s and uses the full 400 kg of

Fig. 2 Results ofminimum-landing-error targeting approach for case 1with r0 � � 1500 m 500 m 2000 m �T and _r0 � ��75 m=s 0 100 m=s �T .
In this case, a feasible solution to the target exists, so the prioritized minimum-landing-error algorithm returns the minimum-fuel solution to the target.
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available fuel. The total computation time required was 14.74 s, and
23 iterations of golden search were used.

B. Unimodality of Cost as a Function of Time of Flight

In this section, we empirically demonstrate that the optimal cost of
theminimum-landing-error solution is unimodal in the time of flight.
Throughout this section, we use the spacecraft parameters given in
Eq. (72). Figure 4 shows J�tf� for a typical set of initial conditions.
The graph was generated by specifying tf in increments of 1 s and
solving Problem 7 for each value of tf. In this case, J�tf� is unimodal,
as required. By reducing the time increments to 0.01 s close to the
minimum, the optimumwas found to be at tf � 56:35 s. The golden
search determines the optimum to be 55.83 s, which is an error of
only 0.9%. Again, golden search was terminated when the optimal
time of flight was known towithin an interval of 3.0 s. The efficacy of
the golden search approach was investigated for a range of initial
conditions by calculating the error between t�f determined through

golden search and the true optimum. The true optimum was
determined approximately by calculating J�tf� for tf 2 �30; 150	 in
increments of 1 s. Initial conditions were selected at random using a
uniform distribution across a box of values specified by

1 km

�5 km

�5 km

2
4

3
5 � r0 �

2 km

5 km

5 km

2
4

3
5

�30 m=s
�100 m=s
�100 m=s

2
4

3
5 � _r0 �

�10 m=s
100 m=s
100 m=s

2
4

3
5 (76)

Since we are only concerned with the unimodality of J�tf� in
the minimum-landing-error case, solutions for which a feasible

trajectory to the target existed were discarded. One hundred random
initial conditions were chosen, and for these the average percentage
error in t�f was 0.012% with a standard deviation of 0.057%. The

maximum error across all instances was 1.8%. This demonstrates
that the golden search approach is effective for a broad range of
initial conditions in the case of minimum-landing-error powered-
descent guidance.

Fig. 3 Results of minimum-landing-error targeting approach for case 2 with r0 � � 1500 m 500 m 2000 m �T and _r0 � ��75 m=s 40 m=s
100 m=s�T . In this case, no feasible solution to the target exists, so theminimum-landing-error algorithmapproach returns the solution thatminimizes the

final distance to the target. Notice that the final altitude is zero and velocity are zero, indicating that safe landing is achieved. The final position is 404 m

from the original target.

Fig. 4 Dependence of minimum distance from target on time of flight
for a typical set of initial conditions. The relationship is unimodal and has

an optimum at 56.35 s. The golden search determines the optimum to be

55.83 s, which is an error of only 0.9%.
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VI. Conclusions

In this paper, we have presented a new approach for optimal
powered-descent guidance that minimizes the final distance of the
lander to the target for a given amount of fuel. If a feasible trajectory
to the target exists, the new algorithm returns the minimum-fuel
solution that reaches the target. The new approach uses a new
analytic convexification result to pose the guidance problem as a
second-order cone program,which can be solved to global optimality
with a priori known bounds on the number of iterations required.
Furthermore, the new approach can handle maximum and minimum
thrust-magnitude constraints explicitly as well as a glide-slope
constraint. The algorithm was demonstrated in simulation with a
Mars landing example.

Appendix: Review and Extension of Technical
Results on Convexification

In this Appendix the key technical lemma, Lemma 1, from [3] is
restated and extended. Omitted in [3] was that the conclusions of
Lemma 1 are valid only when the optimal state trajectory of the
relaxed problem remains in the interior of the set of feasible states. It
has been empirically noted that solutions to the powered-descent
guidance problem can momentarily intersect the boundary of the set
of feasible states in some cases. Here, we extend Lemma 1 to be valid
when this is the case. The restatement of Lemma 1 of [3] follows:

Lemma 4. Consider a solution of Problem 2 given by
ft�f; T�c ���;�����g such that the corresponding state trajectory satisfies
r��t� 2 intX 8 t 2 �0; t�f�. Then ft�f; T�c ���g is also a solution of

Problem 1 and kT�c �t�k � �1 or kT�c �t�k � �2 for t 2 �0; t�f 	.
Proof:We use a.e. tomean almost everywhere: that is, everywhere

except on a set of measure zero. The Hamiltonian for Problem 2 is
given by [23,24]

H�x; Tc;�; �0; �� � �0�� �T1 _r�
�T2Tc
m
� �T2g � ��3� (A1)

where x≜ �r; _r; m� is the state vector, �0 � 0, �� ��1; �2; �3� is the
costate vector with �1;2 2 R3, and �3 2 R. We first state a general
form of necessary conditions of optimality given on page 186 of [23]
(Pontryagin’s maximum principle). To do that, define a vector

v≜ �Tc;��. Since the set defined by control constraints,

�� f�Tc;�� 2 R4: kTck � �; �1 � � � �2g

is a fixed set, any optimal solution defined by the pair �x�; v�� on
�0; t�f 	 must satisfy the following: There exist a �0 � 0 and an

absolutely continuous vector function � 2 R7 such that
1) ��0; ��t�� ≠ 0 8 t 2 �0; t�f 	 and

_��� @H
@x
�x�; v�; �0; �� (A2)

2) The pointwise maximum principle given below must be
satisfied,where a.e. on �0; tf 	means that the condition is valid on a set
of points in the interval, with an exception of a set of points with
measure zero [25]:

H�x��t�; v��t�; �0; �� 
 H�x��t�; v; �0; �� 8 v 2 �

a:e: on t 2 �0; t�f 	 (A3)

3) The following transversality condition must be satisfied: Let

 ≜ �x�; v�; �0; ��, then the vector �H� �0��;���0�;�H� �t�f��;
��t�f�� must be orthogonal to the manifold formed by the set of

vectors �0;x��0�; t�f;x��t�f�� defining the initial and final conditions.
The first necessary condition (A2) implies that by using

�� ��1; �2; �3�, where �1;2 2 R3 and �3 2 R,

_� 1 � 0 (A4)

_� 2 ���1 (A5)

_� 3 �
1

m2
�T2T

�
c

Note that the transversality condition with the specified end
conditions on the position and velocity vectors at t� 0 and t�f of this
problem imply that

�3�t�f� � 0; H� �t�f�� � 0

This follows from the fact that the tangent plane for the manifold of
end conditions is spanned by two unit vectors e6 and e14. Hence, the
inner product of e6 and e14 with �H� �0��;���0�;�H� �t�f��;
��t�f�� must be zero.

Now we show by contradiction that �2�t� � 0 8 t 2 �0; t�f 	 is not
possible. Since �1 is constant and �3�t�f� � 0, if �2 � 0, then �1 � 0,

as well as �3 � 0. SinceH� �t�f�� � 0, this implies that �0 � 0. This

violates the first necessary condition for optimality because it leads
to ��0; ��t�� � 0 8 t 2 �0; t�f 	. Consequently, �2�t� � 0 8 t 2 �0; t�f 	
does not hold. This implies �2�t� � ��1t� a for some constant a.
Since �2 is not identically zero, it can be zero, at most, at one point on
�0; t�f 	. We can express the Hamiltonian as

H�x�t�; Tc;�; �0; ��t�� � R1�t��� R2�t�TTc � R0�t� (A6)

where:

R0�t� � �1�t�T _r�t� � �2�t�Tg; R1�t� � �0 � ��3�t�

R2�t� �
�2�t�
m�t�

Since we know that �2�t� ≠ 0 a.e. on �0; t�f 	, m��t�> 0, and H
depends linearly on Tc, the pointwise maximum principle given by
Eq. (A3) implies that the Hamiltonian is maximized at the boundary
of the set �; that is, we have the following for the optimal solution:

kT�c �t�k � ���t�; a:e: on �0; t�f 	 (A7)

Note that we use Theorem 3.1 in [26], which states that themaximum
of a nonconstant convex function on a convex domain occurs at the
boundary of the domain, to draw the above conclusion. This also
implies that

�1 � kT�c �t�k � �2; a:e: on �0; t�f 	

See [3] for the remainder of the proof. □

The difference between the statement of Lemma 1 in [3] and
Lemma 4 is that Lemma 1 did not include the condition that the
optimal trajectory of Problem 2 is in the interior of the set of feasible
states. This condition must be included for the form of the maximum
principle used to be applicable. Another minor extension from [3] is
that the final position and velocity in Problems 1 and 2 now have
arbitrary user-specified values. This extension is possible since the
proof of the result relies only on the fact that the end position and
velocity are fixed and not the specific values to which they are fixed.

Lemma 5. If an optimal solution of Problem 2 has the property that

���t� � kT�c �t�k 8 t 2 �0; t�f 	 (A8)

then this solution is also optimal for Problem 1.
Proof: To prove this claim, first observe that Problem 2 with the

additional constraint ��t� � kTc�t�k for t 2 �0; tf	 is identical to
Problem 1. Hence, an optimal solution to Problem 2 that satisfies the
condition (A8) is also feasible for Problem 1 and hence has cost
greater than or equal to the optimal cost of Problem 1. Since
Problem 2 is a relaxation of Problem 1, any optimal solution to
Problem 2has cost less than or equal to the optimal cost of Problem1.
Hence, the cost of the optimal solution to Problem 2 is equal to the
optimal cost of Problem 1 from which the result follows.

Lemma 4 can be seen as a result that establishes that the
condition (A8) is always satisfied for optimal solutions to Problem 2
with r��t� 2 intX for t 2 �0; t�f�, in which case Lemma 5 enables us

to declare that the optimal solution of Problem 2 is an optimal
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solution of Problem 1. In this case, a lossless convexification of
Problem 1 is achieved via Problem 2. Our next result presents an
extended result that establishes that condition (A8) is also satisfied
for trajectories that touch the boundary of X. This extension is
nontrivial, since having contact with the boundary of the feasible set
of states can lead to discontinuities in the costate vector, whose
behavior is critical in proving the lossless convexification of the
guidance problem. Before we state our next result, we observe that
the set X satisfies the following conditions for h�r� :�
kS�r � s�k � cT�r � s�, @X� fr 2 R3: h�r� � 0g and for all r 2
@X such that r ≠ s:

@h

@r
�r�≠ 0 and 9 u; kuk� 1; subject to uT

@h

@r
�r�� 0

uT�r� s�> 0; uTg� 0 (A9)

where s is the target location such that eT1 s� 0 and � e2 e3 	Ts� q.
These conditions are straightforward to verify geometrically for X.

Lemma 6. Consider a solution of Problem 2 given by
ft�f; T�c ���;�����g and the corresponding state trajectory r����. If
r��t� 2 @X for, at most, one point t 2 �0; t�f�, then T�c ��� is also an

optimal solution of Problem 1 and kT�c �t�k � �1 or kT�c �t�k � �2
almost everywhere t 2 �0; t�f 	.

Proof: From Lemma 4 we know that if r��t� is never in @X for
t 2 �0; t�f� then T�c ��� is also an optimal solution of Problem 1 and

kT�c �t�k � �1 or kT�c �t�k � �2 almost everywhere t 2 �0; t�f 	. We

need consider only the case when r��t� 2 @X for a single instant
tm 2 �0; t�f�. Since the condition (A9) holds, Theorem 24 in [27]

(Note 1 on page 292) states that themaximumprinciple (A3) holds in
the interior of X and the following jump condition on the costate
vector holds for some � 
 0:

��t�m� � ��t�m� � �
@h
@r �r�tm��

0
0

2
4

3
5 (A10)

where we have used the fact that h only depends on r, the position
vector. The above jump condition implies that

�1�t�m� � �1�t�m� � �
@h

@r
�r�tm��; �2�t�m� � �2�t�m�

�3�t�m� � �3�t�m� (A11)

Nowwewill show that �2�t� ≠ 0 a.e. on �0; t�f 	 to complete the proof

via the pointwise maximum principle (A3). First note that the
portion of the optimal solution fT�c���;�����g on �tm; t�f 	 is an optimal

solution of Problem 2 for the initial conditions r�0� � r��tm�,
_r�0� � _r��tm�, and m�0� �m��tm�. This can be shown via a proof
by contradiction. Suppose this statement is not true, then there is an
optimal solution with a trajectory ft��f ;T��c ���;������g for the above
initial conditions with a lesser fuel cost. Hence, the following
solution will be a feasible solution of Problem 2 for the initial
conditions r�0� � r0, _r�0� � _r0, and m�0� �mwet with a lesser fuel
cost, which is a contradiction:

fTc�t�;��t�g

�
(
fT�c �t�;���t�g for t 2 �0; tm�
fT��c �t � tm�;����t� tm�g for t 2 �tm; tm � t��f 	

From the proof of Lemma 4, the optimality of this portion of the
trajectory (after the instant of contact tm) indicates that �2�t� ≠ 0 a.e.
on �tm; t�f 	. From Eqs. (A5) and (A10) we have

�2�t� � ��1�0�t� �2�0� t 2 �0; tm	
�2�t� � ��1�t�m��t� tm� � �2�tm� t 2 �tm; t�f 	 (A12)

Suppose �2�tm� ≠ 0 then, since �2 is a linear function of time over
�0; tm	, �2�t� ≠ 0 a.e. on �0; tm	. This implies that �2�t� ≠ 0 a.e. on
�0; t�f 	, and the result follows in an identical manner to the proof of

Lemma 4. Therefore, we only need to consider the case when

�2�tm� � 0. Let �≜ �@h=@r��r��tm��. First consider the case when
r��tm� ≠ s. In this case, there exists a unit vector u satisfying
Eq. (A9). Since r��t�f� � s and uT�r��tm� � s�> 0, there exists

some interval �t1; t2� � �tm; t�f 	 such that vu�t�≜ uT _r��t�< 0 on

�t1; t2� and t2 � t > 0. Since �r�t� � g� �Tc�t�=m�t�	, uTg< 0, and
vu�t�< 0 over an interval, there must be a control force acting along
u over a period of time to have uT _r�t�f� � 0: that is, uTT�c �t�> 0 for

t 2 �t3; t4� � �tm; t�f 	 for some t4 � t3 > 0. Having �2 ≠ 0 in �t3; t4�
and the pointwise maximum principle (A3) imply that maximizing
the Hamiltonian when �2�t� ≠ 0 requires the following condition to
hold:

T�c �t� � ���t� �2�t�k�2�t�k
(A13)

which also implies that uT�2�t�> 0 on this subinterval. Since
�2�t� � ���1�t�m� � ����t� tm�, this implies that (note that
uT�� 0)

uT�2�t� � �uT�1�t�m��t � tm� � �uT��t � tm�
� �uT�1�t�m��t� tm�

Since uT�2�t�> 0 on some nonzero length subinterval of �t3; t4�,
where t � tm > 0, this implies that uT�1�t�m� ≠ 0, which then
implies that �1�t�m� � �1�0� ≠ 0. Then by using Eq. (A12) {�2 is a
linear function of time on �0; tm	with �1�0� ≠ 0}, we obtain �2�t� ≠
0 a.e. on �0; tm	 as well as �tm; t�f 	 {that is, �2�t� ≠ 0 a.e. on �0; t�f 	},
and the result follows in an identical manner to the proof of
Lemma 4.

Next we consider the case when r��tm� � s. In this case, we will
show that _r��tm� � 0 and hence the maneuver is over: i.e., tm � t�f .
First note that nT _r��tm� � 0, where n≜ c=kck. This follows from
the fact that nT�r��t� � s� 
 0 for t � tm, and since
nT�r��tm� � s� � 0, this implies that nT _r��t� � 0 for t 2 �tm �
b; tm	 for some b > 0. Now if nT _r��tm�< 0, then nT�r��t� � s�< 0
for some t 2 �tm; tm � a�, where a > 0, which violates the state
constraint. Hence,nT _r��tm� � 0. Nowwewill showby contradiction
that for any unit vector e such that eTn� 0, we have

ve ≜ eT _r��tm� � 0. First let us assume that there exists a unit vector
e such that eTn� 0 and ve > 0. Let � > 0 be the maximum possible
magnitude of acceleration due to the gravity and the thrust vector
along any direction. Then

0 � rc�t�≜ cT�r��t� � s� � kcknT�r��t� � s� � �kck�2=2

where � � t� tm and we have used the fact that nT _rT�tm� � 0. Also
define

re�t�≜ eT�r��t� � s� 
 ve� � ��2=2

Then

re��� � rc��� 
 ve� � ��1� kck��2=2
� ve��1 � ��1� kck��=�2ve��

Now note that re��� � rn���> 0 for � 2 �0; �2ve�=���1� kck���
and that h�r����� 
 re��� � rc��� since kS�r � s�k 
 keT�r � s�k.
Since re��� � rc���> 0, this means that r���� =2 X for
� 2 �0; �0; �2ve�=���1� kck���, which is a contradiction. Hence,
there exists no direction with a unit vector e, such that ve > 0, which
also holds true for�n, which implies that _r��tm� � 0. Then at time
tm, the position is at the target and the velocity is zero.Hence, tm is the
optimal time offlight t�f . Hence, r

��tf� 2 intX8 t 2 �0; t�f� and from
Lemma 4 the result follows.

In summary, if we compute an optimal solution of the convex
Problem 2 via the algorithm in [3] and obtain a state trajectory that
touches the boundary of the set of feasible states, atmost, once during
the maneuver before reaching its target, this solution is also optimal
for the nonconvex Problem 1.
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For Mars landing, all of the solutions we have generated via the
algorithm of [3] have touched the boundary, at most, once. Hence,
they satisfy Lemma 6 for lossless relaxation, and so they are optimal
solutions to the original nonconvex optimal control problem forMars
powered-descent guidance. The solutions generated include an
extensive empirical investigation across the space of feasible initial
conditions and system parameters.

However, through careful selection of the problem parameters,
cases can be constructed such that an optimal solution of Problem 2
lies on the boundary for a nonzero duration. Even in these cases, we
observe that the optimal trajectories obtained by solving Problem 2
satisfy the control constraints of Problem 1. The theoretical analysis
of such trajectories requires a different version of the maximum
principle (see Theorem 25 on page 292 in [27]) from the one used
herein. Since this additional step uses substantially more complex
analyses and these trajectories are rarely encountered in practice, it is
not considered here.
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