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Abstract— In this paper we consider finite-horizon predictive
control of dynamic systems subject to stochastic uncertainty;
such uncertainty arises due to exogenous disturbances, model-
ing errors, and sensor noise. Stochastic robustness is typically
defined using chance constraints, which require that the prob-
ability of state constraints being violated is below a prescribed
value.

Prior work showed that in the case of linear system dynamics,
Gaussian noise and convex state constraints, optimal chance-
constrained predictive control results in a convex optimization
problem. Solving this problem in practice, however, requires the
evaluation of multivariate Gaussian densities through sampling,
which is time-consuming and inaccurate.

We propose a new approach to chance-constrained predictive
control that does not require the evaluation of multivariate
densities. We use a new bounding approach to ensure that
chance constraints are satisfied, while showing empirically that
the conservatism introduced is small. This is in contrast to
prior bounding approaches that are extremely conservative.
Furthermore we show that the resulting optimization is convex,
and hence amenable to online control design.

I. I NTRODUCTION

Robust predictive (orfinite horizon) control of systems
subject to stochastic uncertainty has received a great deal
of attention in recent years[1], [2], [3], [4], [5], [6], [7],
[8], [9]. Stochastic models can be used to characterize, for
example, exogenous disturbances, modeling error and sensor
noise. In many cases, stochastic uncertainty models are more
realistic than set-bounded models, for example in the case of
wind disturbances. Previous work has posed problems such
as Unmanned Air Vehicle (UAV) path planning [7], chemical
reactor control [2] and network traffic control [5] as robust
predictive control under stochastic uncertainty.

For a predictive controller to berobust, it must take into
account uncertainty so that state constraints, such as obstacle
avoidance constraints, are not violated. With most stochastic
uncertainty models however, it is not possible to guarantee
that state constraints are satisfied, since there is always some
small probability of an arbitrarily large disturbance occur-
ring. Previous work therefore described robustness in terms
of chance constraints, which require that the probability
of state constraint violation is below a prescribed value.
By setting this value appropriately, the operator can trade
conservatism against performance; a control strategy thatis
less risky will typically take more fuel or time (and vice
versa).
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A number of approaches to chance-constrained predictive
control have been proposed in recent years. In the case
of Gaussian uncertainty distributions, [1] considered chance
constraints on individual scalar values, while [2], [3] con-
sidered chance constraints on joint random variables. This
extension to joint random variables is essential if we wish
to constrain the probability of failure over the entire plan-
ning horizon. [7] considered control in nonconvex feasible
regions, while [8] extended this line of research to arbitrary
probability distributions and hybrid discrete-continuous sys-
tems. The problem of explicitly optimizing feedback design
as well as feedforward controls was considered by [4], [6].
Other related work includes that of [9], which provides
early results on chance-constrained approaches in receding
horizon.

By assuming Gaussian distributions for the uncertain
variables, and convexity of the feasible region, the work of
[2], [3] uses the result of [10] to show that the optimiza-
tion resulting from the chance-constrained predictive control
problem is convex, and can therefore be solved effectively
using standard nonlinear solvers. This approach is limited,
however, by the need to evaluate the multivariate Gaussian
integrals in the constraint functions. These integrals are
approximated through sampling, which is time-consuming
and leads to approximation error. In this paper we present a
new approach that solves the chance-constrained predictive
control problem without the need for sampling. The key idea
is to bound the joint probability of multivariate constraint
violation conservatively using Boole’s inequality. This leads
to constraints involving the sum of many univariate proba-
bilities, which can be evaluated efficiently. We show that the
resulting optimization is convex, and can therefore be solved
efficiently using nonlinear solvers. Critically, we show with
empirical examples that the conservatism introduced by the
bounding approach is small. We show also that this is in
contrast with prior bounding approaches that are conservative
by very many orders of magnitude.

II. PROBLEM STATEMENT

In this paper, we are concerned with the following
discrete-time Linear Time Invariant (LTI) plant:

xk+1 = Axk + Bw
wk + Buk, (1)

wherex ∈ ℜnx is the system state,u ∈ ℜnu are the system
inputs, andw ∈ ℜnw is a noise vector. The noise vector can
model disturbances, uncertainty in the system model, and
sensor noise. We assume thatw is a Gaussian noise process
and that the initial statex0 is a Gaussian random variable;
these two are uncorrelated. We usexk to denote the value of



x at time stepk, andx
′ to denote the transpose ofx. We use

P (A) to denote the probability of eventA andp(x) to denote
the probability distribution function of random variablex.
We usex̄ to denote the mean of the random variablex, and
useSx to denote its covariance. Note that the plant definition
(1) can model an LTI plant with a fixed-gain linear feedback;
we will use this in Section VI.

In finite-horizon predictive control, we plan over a finite
horizon of time instances fromk = 0 to k = T . For
notational convenience we ‘lift’ the variables of interestover
the time horizon using the following definitions:
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. (2)

The lifted system dynamics are given by:

X = Gxxx0 + GxuU + GxwW, (3)

where the matricesGxx, Gxu, Gxw are calculated through
repeated multiplication of the system matrices in (1), see
for example [4]. The chance-constrained predictive control
problem can now be stated.

Problem 1 (Chance-constrained control problem).

Minimize f(X̄, U)
Subject to: U ∈ FU

P (X /∈ FX) ≤ δ
X = Gxxx0 + GxuU + GxwW.

In other words, we must choose the control inputs to min-
imize cost, while ensuring that the system state leaves the
feasible region with probability at mostδ. We assume that
the cost functionf(X, U) is convex inX andU, the control
constraint setFU is convex, and the state constraint setFX

is a convex polytope.

III. E XISTING RESULTS

While notationally simple, Problem 1 is made challenging
by the chance constraintP (X /∈ FX) ≤ δ. There are three
key challenges resulting from this constraint. First, we must
determine the distribution ofX as a function of the control
inputs U. Second, we must perform a multidimensional
integral over this distribution. Finally, we must optimizewith
constraints on this integral.

The first of these challenges is removed by the assump-
tions of linear system dynamics and Gaussian noise. In this
case, the system stateX is a Gaussian random variable with
mean and covariance given explicitly by:

X̄ = Gxxx̄0 + GxuU + GxwW̄

SX = GxxSx0G
′
xx + GxwSWG′

xw. (4)

Problem 1 can now be restated as follows:

Problem 2 (Linear-Gaussian control problem).

Minimize f(X̄, U)
Subject to: U ∈ FU

∫

z/∈FX
N (X̄, SX)dz ≤ δ

X̄ = Gxxx̄0 + GxuU + GxwW̄,

whereN (·) is the multivariate normal distribution:

N (X̄, SX) =
1

(2π)nx/2|SX |1/2
e−

1
2 (z−x̄)′(S−1

x )(z−x̄). (5)

Note that, sinceSX is not a function of the control inputs
U, it can be precomputed.

Prior worked used this result, together with the convexity
result of [10], to show that Problem 2 is convex[2], [3].
Convexity of an optimization problem means that a local
optimum is also a global optimum (first-order necessary
conditions for global optimality are also sufficient), and that
standard nonlinear solvers can find such optima efficiently.
Hence [2] showed that the chance constrained control prob-
lem can be solved, in principle, using nonlinear solvers.
Practical implementation of this method, however, requires
evaluation of the multidimensional integral:

I(U) =

∫

z/∈FX

N (X̄, SX)dz. (6)

This integral cannot be evaluated in closed form. As a result
[2] use a sampling approach to approximate the value and
its derivatives. In a control problem withnx = 4 and
T = 20, the value (6) is an integral in 84 dimensions, hence
achieving a good approximation requires a very large number
of samples. Performing this sampling procedure at each
iteration of the optimization is time-consuming and hence
limits the applicability of the approach to real-time control
problems. Furthermore, since the sample-approximated con-
straint function used in the optimization is now a random
variable, the theoretical guarantees of convexity no longer
apply. In the next section we present a new approach that
does not require this sampling procedure.

IV. N EW APPROACH

The new approach can be summarized as follows. First
we pose an alternative form of Problem 2 that does not
require evaluation of multivariate densities, which we call
the conservative problem. Then we show that a feasible
solution to the conservative problem is a feasible solution
to Problem 2. Next we show that the conservative problem
is convex. Finally, in Section VI we show empirically that
the conservatism introduced is small.

A. The Conservative Problem

The convex polytopic feasible regionFX can be defined
by a conjunction ofN linear inequality constraints:

FX ,

N
⋂

i=1

{X : a′
iX ≤ bi}. (7)

Now consider the following problem:



Problem 3 (Conservative Problem).

Minimize f(X̄, U)
Subject to: U ∈ FU

P (a′
iX > bi) ≤ ǫi ∀i

∑N
i ǫi ≤ δ

X = Gxxx0 + GxuU + GxwW.

Lemma 1. A feasible solution to Problem 3 (the conservative
problem) is a feasible solution to Problem 1 (the chance-
constrained problem).

Proof: From (7):

x /∈ F ⇐⇒ x /∈
N
⋃

i=1

{x : a′
ix > bi}. (8)

Boole’s inequality gives us the following bound for a count-
able set of eventsA1, . . . , AN :

P

[

N
⋃

i=1

Ai

]

≤
∑

i

P (Ai). (9)

SettingAi as the event{a′
ix > bi} gives us:

P (x /∈ F ) ≤
∑

i

P (a′
ix > bi). (10)

For a feasible solution to Problem 3 we know that
∑

i P (a′
ix > bi) ≤ δ, and henceP (x /∈ F ) ≤ δ. The

constraints in Problem 1 are therefore satisfied by a feasible
solution to Problem 3. �

Problem 3 is therefore a conservative approximation of
Problem 1. In this paper we propose to solve this approxi-
mation instead of solving Problem 1. The intuition is that, in
solving Problem 3, we explicitly optimize the probability of
each individual constraint being violated, denotedǫi. This
idea of risk allocation was previously proposed by [11],
however in that work the optimization of theǫi was carried
out in a separate optimization step. Other related work[7]
used Boole’s inequality to generate conservative solutions,
but assumed that theǫi were equal and fixeda priori, which
leads to unnecessary conservatism. In the following sections
we show that Problem 3 is convex and does not require the
evaluation of multidimensional integrals.

B. Constraint Evaluation

The key difference between Problem 3 and Problem 1
is that Problem 3 no longer involves multivariate integrals.
Instead, it hasN constraints onunivariate integrals. To see
this, defineyi , a

′
ix and note thatyi is a univariate Gaussian

random variable with mean and variance given by:

ȳi = a
′
iGxxx̄0 + a

′
iGxuU + a

′
iGxwW̄

Syi
= a

′
iGxxSx0G

′
xxai + a

′
iGxwSWG′

xwai. (11)

We can now write the probability of each individual con-
straint being violated as follows:

P (a′
iX > bi) = P (yi > bi) =

1
√

2πSyi

∫ ∞

bi

e
− (yi−ȳi)

2

2Syi dyi.

(12)

Because this is a singlevariate integral, we can express this
in terms of the standard singlevariate Gaussian cdf:

P (a′
iX > bi) =

1√
2π

∫ ∞

bi−ȳi√
Syi

e
−z2

2 dz = 1 − cdf

(

bi − ȳi
√

Syi

)

,

(13)

where cdf is the standard Gaussian cumulative distribution
function:

cdf(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz. (14)

In order to evaluate each constraint, we therefore need to
evaluate cdf(·) only once. While cdf(·) cannot be evaluated
in closed form, it can be evaluated quickly and accurately
using a series expansion or a one-dimensional lookup. In
order to evaluate every constraint requiresN such lookups,
where N is the number of state constraints. This is sig-
nificantly less computationally intensive than drawing the
very large number of samples necessary to approximate the
multidimensional integral (6) to the same precision. Hence
constraints in the conservative control problem (Problem 3)
can be evaluated far more efficiently than in the chance
constrained control problem (Problem 1).

C. Gradient Evaluation

In this section we show that derivatives of the constraints
in Problem 3 can also be computed efficiently, without the
need for sampling. Specifically we want to compute the
gradient ofP (yi > bi) with respect to the control input
sequenceU. The chain rule gives:

∇UP (yi > bi) =
∂P (yi > bi)

∂ȳi
∇Uȳi. (15)

The Leibniz integral rule gives:

∂P (yi > bi)

∂ȳi
=

∂

∂ȳi

1√
2π

∫ ∞

bi−ȳi√
Syi

e−
z2

2 dz

=
1

√

2πSyi

e
− (bi−ȳi)

2

2Syi , (16)

and from (11) we have:

∇Uȳi = G′
xuai. (17)

Hence the gradient of each constraint in Problem 3 is:

∇UP (a′
iX > bi) = ∇UP (yi > bi) =

G′
xuai

√

2πSyi

e
− (bi−ȳi)

2

2Syi .

(18)

Note that this can be evaluated exactly without the need
for sampling or table lookups. This is possible because
Problem 3 involves only singlevariate constraints.



D. Convexity

We now prove that Problem 3 is a convex optimization
problem. First we restate Problem 3 using (13) to express
the probabilities in integral form:

Problem 4 (Conservative Problem - Integral Form).

Minimize f(X̄, U)
Subject to: U ∈ FU

1 − cdf
(

bi−ȳi√
2Syi

)

≤ ǫi ∀i

ȳi = a
′
iGxxx̄0 + a

′
iGxuU + a

′
iGxwW̄ ∀i

Syi
= a

′
iGxxSx0G

′
xxai + a

′
iGxwSWG′

xwai ∀i
∑N

i ǫi ≤ δ.

Lemma 2. cdf(x) is a concave function ofx in the rangex ∈
[0,∞]. Hence forλ ∈ [0, 1], if:

x(∗) = λx(1) + (1 − λ)x(2) (19)

then:

cdf(x(∗)) ≥ λcdf(x(1)) + (1 − λ)cdf(x(2)). (20)

Proof: Following the proof in [12], concavity comes from
the fact that cdf(·) is the integral of a function that is
monotonically decreasing in the range[0,∞]. �

Lemma 3. For bi ≥ ȳi the constraint:

1 − cdf

(

bi − ȳi
√

2Syi

)

≤ ǫi (21)

is convex in(ȳi, ǫi).

Proof: Consider two solutions(ȳ(1)
i , ǫ

(1)
i ) and (ȳ

(2)
i , ǫ

(2)
i )

that satisfy (21). In order to show convexity, we must show
that (21) is also satisfied by(ȳ(∗)

i , ǫ
(∗)
i ), whereλ ∈ [0, 1]:

(ȳ
(∗)
i , ǫ

(∗)
i ) ,

(

λȳ
(1)
i + (1 − λ)ȳ

(2)
i , λǫ

(1)
i + (1 − λ)ǫ

(2)
i

)

.

(22)

From Lemma 2 we have:

1 − cdf

(

bi − ȳ
(∗)
i

√

2Syi

)

≤ 1 − λcdf

(

bi − ȳ
(1)
i

√

2Syi

)

− (1 − λ)cdf

(

bi − ȳ
(2)
i

√

2Syi

)

≤ 1 − λ(1 − ǫ
(1)
i ) − (1 − λ)(1 − ǫ

(2)
i ) = ǫ

(∗)
i , (23)

where the final inequality comes from knowing that
(ȳ

(1)
i , ǫ

(1)
i ) and (ȳ

(2)
i , ǫ

(2)
i ) satisfy (21). Hence (21) is satis-

fied by (ȳ
(∗)
i , ǫ

(∗)
i ), which proves the convexity of (21).�

Lemma 4. For δ ≤ 0.5, Problem 4 is convex, and so is
Problem 3 (the conservative problem).

Proof: To show convexity of Problem 4 it suffices to show
that all constraints are convex, since we have assumed that
the cost functionf(·) is convex. The control constraintU ∈
FU is convex since we have assumed the feasible control set

FU to be convex. All other constraints are linear, and hence
convex, except for (21). Forδ ≤ 0.5, we know that a feasible
solution hasǫi ≤ 0.5 for all i since

∑N
i ǫi ≤ δ. By the

definition of cdf(·), for (21) to be satisfied withǫi ≤ 0.5, we
must havebi ≥ ȳi, in which case (21) is convex by Lemma 3.
Hence Problem 4 is convex. Since Problem 4 is equivalent
to Problem 3, Problem 3 is also convex. �

E. Summary

We have proposed a new conservative approximation of
the chance-constrained control problem. A feasible solution
to this approximation is a feasible solution to the original
problem. The conservative problem is convex, meaning that
existing nonlinear solvers can be used to find the globally
optimal solution in practice. Furthermore, the constraint
values and derivatives needed to perform this optimization
can be computed without the need for sampling. While the
approach is conservative, we show empirically in Section VI
that the conservatism introduced is small.

V. COMPARISON WITH SET CONVERSION TECHNIQUES

Alternative conservative approximations of the chance
constrained problem (Problem 1) have been proposed pre-
viously, for example [4]. One particularly computationally
tractable approach is to convert all stochastic distributions
into sets. That is, we define, before optimization begins, a
setG(U) such that the following condition holds:

P
(

X /∈ G(U)
)

≤ δ. (24)

We can then use algorithms for robust control underset-
boundeduncertainty to ensure thatG(U) ⊆ Fx, for example
[13]. This ensures that the required chance constraints are
satisfied:
{

G(U) ⊆ FX

}

∧
{

P
(

X /∈ G(U)
)

≤ δ
}

⇒ P
(

X /∈ FX

)

≤ δ.
(25)

With Gaussian uncertainty, we typically choose the set
G(U) to be ellipsoidal with principal axes aligned with the
covariance ofX. This leads to a set-bounded problem where
we must optimize the location of the center of the ellipsoid
subject to the ellipsoid lying withinFX . The choice of ellip-
soidalG(U) leads to tractable determination of the smallest
ellipsoid size satisfying (24) as well as tractable methodsfor
ensuringG(U) ⊆ Fx; see for example [4], for details. We
now discuss how this set conversion approach relates to our
new convex optimization approach. In Section VI we provide
an empirical comparison.

Figure 1 shows, schematically, a two-dimensional Gaus-
sian distribution and an ellipsoid containing exactly 99% of
the probability density. In most chance-constrained problems
of interest, the chance constraint is tight in the optimal
solution. We can measure the conservatism of a particular
approach by the difference between the valueP (X /∈ FX)
from δ in the returned solution. With set conversion tech-
niques, the only way thatP (X /∈ FX) can be close to
δ is if the feasible region approximates the setG(U), as
shown in Figure 1. This is, however, extremely unlikely in



the general case. In most optimization problems of interest,
the feasible region will be significantly larger thanG(U) and
of a different geometry, as in Figure 2. Observe that, using a
set conversion approach in this case,P (X /∈ FX) is far below
the constraintδ, indicating a great deal of conservatism. As
the dimensionality of the distribution increases, the level of
conservatism increases dramatically.

 

FX 

p(X|U) 

X 

G(U) 

Fig. 1. Chance constrained optimization problem approximated using
ellipsoidal set conversion. Shown is a two-dimensional Gaussian
distribution for X, represented using contours of the pdf (dashed). The
thick ellipse is the set G(U) containing 99% of the probability mass.
In this case, the feasible region FX is almost identical in geometry to
G(U). The cost is defined so that the mean X̄ moves as far as possible
in the direction of the arrow. With this particular geometry P (X /∈ FX)
can be close to the constraint δ because the integral of the pdf over
FX is close to the integral over G(U).

 

Fig. 2. Chance constrained optimization problem with general feasible
region (geometry dissimilar to G(U)). In the optimal solution returned
by the set conversion method, the set G(U) is constrained to lie within
FX . Observe that large portions of the pdf are outside G(U) but within
FX , meaning that P (X /∈ FX) is significantly below δ in this solution.
Hence the solution is conservative. This conservatism increases as
the dimensionality of the distribution increases.

Intuitively, a set bounding approach assumes a ‘worst-
case’ scenario, where all constraints contribute equally to the
overall probability of failure. In most finite-horizon control
problems, only a small subset of the constraints are active in
the optimal solution. We claim, then, that a set conversion
approach leads to high conservatism. By contrast, the new
approach described in this paper optimizes the violation
probabilities assigned to each constraint, denotedǫi. In doing
so it can greatly reduce the conservatism of the solution, as
illustrated in Figure 3. This ‘risk allocation’ concept was
proposed first by [11].

The new approach does introduce conservatism in the
use of Boole’s inequality. However we show empirically

 

A 

B C 

Fig. 3. Chance constrained optimization using new convex optimiza-
tion approach. The approach optimally allocates the contribution to
the failure probability from each of the constraints. In the solution
shown, two of the constraints have approximately zero probability of
violation, so the algorithm pushes the mean closer to the upper-left
corner until the probability of violation of the constraints sums to 0.01.
The conservatism introduced by Boole’s inequality is the integral of the
pdf over region B, which is small in practice.

in Section VI that this conservatism is small, while the
set conversion approach is conservative by many orders of
magnitude.

VI. SIMULATION RESULTS

In this section we show simulation results demonstrating
the new approach. The system to be controlled has statexk =
[x′

k y′
k]′ and the system parameters are defined by:

A =

[

1 1
−0.5 0

]

B =

[

0
0.03̇

]

Bw= C =

[

1 0
0 1

]

D =

[

0
0

]

(26)

The noise parameters are:

Sx0 =

[

0.0001 0
0 0.0001

]

Swk
=

[

0.001 0
0 0.001

]

∀k

(27)

x̄0 =

[

0
0

]

w̄k =

[

0
0

]

∀k. (28)

The constraints on the state are:

−0.25 ≤ yk ≤ 0.25 ∀k. (29)

These are encoded using2(T + 1) linear inequality con-
straints. The cost is defined as:

f(X̄, U) =

T
∑

k=0

(x̄k − x
r)′(x̄k − x

r). (30)

In other words, we try to minimize the squared distance of
the expected state from some reference statex

r, averaged
over the planning horizon. For the convex optimization we
used Sequential Quadratic Programming, as implemented in
the Matlabfmincon function. Optimization was performed
on a MacBook Pro with a 2.4GHz processor and 4GB RAM.

Figure 4 shows a single solution to the predictive control
problem using the new convex optimization approach. In this
case,xr = [1 0]′, N = 20 andδ = 0.01. The new approach
optimizes the allocation of risk at each time step, while



ensuring that the probability of failure over the entire horizon
is less thanδ. As shown in Figure 6, the risk allocation values
ǫi are tiny (< 10−8) for all constraints except for 5 of the
42 constraints. This implies that optimizing risk allocation
can lead to significant gains over a set conversion approach,
which uses ana priori fixed backoff from the constraints.

For the sake of comparison, Figure 5 shows a solution
to the same problem using the elliptical set conversion
approach of [4]. Notice that the state means are very far
from the constraints compared to the solution in Figure 4,
indicating a great deal of conservatism. This is because the
set conversion approach assumes a ‘worst-case’ allocation
of risk to each of the constraints over the time horizon,
rather than optimizing the risk allocation. To evaluate the
conservatism we performed106 Monte Carlo simulations and
determined the empirical probability of constraint violation,
which we refer to as the ‘true’ probability of failurePtrue.
We define the conservatism factor as(δ − Ptrue)/Ptrue.
For this example, the new convex optimization approach
gave a true probability of failure of 0.0086, and hence is
conservative by a factor of 0.2. The elliptical set conversion
approach [4] has a true probability of failure of less than
10−6, and is hence conservative by a factor of over104.
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Fig. 6. Risk allocation in optimal solution of Figure 4. The bars show
the value ǫi, i.e. the risk allocation, for each constraint in the problem.
The allocated risks add to the maximum probability of failure for the
entire horizon, δ, shown as the dashed line. Only a handful of the ǫi

are non-negligible.

In order to assess the average performance of the new
algorithm, we generated random instances of the control
problem by settingxr = [n 0]′ with n uniformly distributed
in the range[0, 1]. Again we usedN = 20 andδ = 0.01. The
average results for20 solutions are shown in Table I. Since
we are interested in the conservatism of the new approach,
we have removed instances where the chance constraints
were not tight. In the globally optimal solution, we would
expect the true probability of failure to be the same asδ. The
results show that the new convex optimization approach is
many orders of magnitude less conservative than the elliptical
set conversion approach for a small penalty in solution time.

VII. C ONCLUSION

We have proposed a new approach for chance-constrained
predictive control that does not require the evaluation of

Algorithm Time (s) Ptrue Conservatism
Convex Optimization 1.03 0.0079 0.27

Elliptical Set Conversion 0.22 < 10−6 > 104

TABLE I. Optimization time and true probability of failure averaged
for 20 randomized problem instances with δ = 0.01. Instances where
the chance constraint is not tight have been removed. The convex
optimization approach is orders of magnitude less conservative than
the set conversion approach for a small penalty in solution time.

multivariate probability densities. By using a conservative
bounding approach we ensure that chance constraints are
satisfied, and we have shown analytically that the resulting
optimization is convex. This means that existing solvers
can find the globally optimal solution efficiently. Empirical
results showed that the approach is many orders of magnitude
less conservative than existing set conversion techniquesfor
a small penalty in computation time.
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Fig. 4. Single solution using new convex optimization approach for x
r = [1 0]′, N = 20 and δ = 0.01. The red dots show the state mean x̄k

for k = 0, . . . , N . The blue ellipses show the covariance (1-sigma) ellipses for xk. The state constraints are shown as thick black lines. The new
approach optimizes the allocation of risk at each time step, while ensuring that the probability of failure over the entire horizon is less than δ.
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Fig. 5. Single solution for x
r = [1 0]′, N = 20 and δ = 0.01, using elliptical set conversion approach of [4]. The state means are very far from

the constraints compared to the solution in Figure 4, indicating a great deal of conservatism.


