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1 Motivation

The objective of this project is to achieve reliable transfer of an object from one robotic manipulator to
another. This capability is useful for a number of applications, for instance robotic assembly, or robots with
multiple manipulators, such as humanoid robots.

Achieving reliable object transfer poses a number of challenges for both control and estimation. As with
most manipulation problems, the inverse kinematics problem must be solved so that the desired endpoint
location can be specified in Cartesian coordinates, rather than in the joint space of the manipulator. An
additional challenge particular to the cooperative robotics problem is that more than one manipulator may
have a grasp on the same object. Manipulators that are carrying out simple position control may encounter
problems when grasping the same object. Minor errors in forward kinematics can lead to large controller
forces, or even unstable dynamics, as each controller tries to counteract the other to drive the perceived error
to zero.

On the estimation side, carrying out reliable transfer depends critically on determining the grasp state;
in other words, does a particular robot have a grasp on the object, or do both have the object? The grasp
state must be determined before the sequence of events in a transfer task can proceed. For example, the
manipulator receiving the object cannot move away until it is certain that the manipulator passing the object
has released. In many instances, having pressure sensors mounted in the hand is infeasible. For example,
packaging reasons can mean that the necessary space is not available, as is the case with the JPL LEMUR
hexapod. We therefore need to infer the grasp state from the available observations, which are usually
supplied by position encoders at the joints.

For this project we assume that each manipulator carries out estimation independently, without joint
angle observations from the other robot, but with knowledge of its own joint angles and of the commands
to be issued to both robots. This is typical of a multi-agent cooperative task, and the lack of observations
makes the estimation task even more challenging.

This report describes the approach we use to solve this problem, which is comprised of the following two
components.

1.1 Manipulator Control

We use impedance control to solve the inverse kinematics problem and to ensure that the manipulator
is compliant to external forces. Layered above the impedance controller, we use a trajectory planner to
continually update the desired endpoint position to produce smooth trajectories for movement across large
distances and around obstacles.

1.2 Estimation

In order to solve the estimation problem we use a Hybrid Estimation approach, where we model the system
as a Probabilistic Hybrid Automaton. Hybrid Estimation is able to infer the state of the manipulator,
including the grasp state, using a model of the system dynamics, the observations, and the control inputs
issued to the system.
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Using two four degree of freedom manipulators, we implement our estimation and control approach and
demonstrate that we can achieve reliable object transfer. We also show that hybrid estimation can be used
to track the state of the system reliably. Finally, we demonstrate the ability of hybrid estimation to to detect
faults, such as incorrect grasps.

2 Robotic Manipulator

The Model Based Embedded and Robotic Systems group in the Computer Science and Artificial Intelligence
Laboratory has two Whole Arm Manipulators (WAMs), manufactured by Barrett Technology. A photograph
of a WAM is shown in Fig. 1.

Figure 1: A Barrett Technology Whole Arm Manipulator (WAM).

The WAM consists of a two-link arm and a three-fingered hand. The arm has four degrees of freedom:
two rotational joints at the base and another two rotational joints at the elbow. The hand also has four
degrees of freedom: one provided by the curl of each of the three fingers and an other provided by the ability
to rotate or ‘spread’ the fingers about the palm of the hand.

The WAMs are supplied with a software library that provides an interface to the manipulator. The
library provides the user with the current joint angles and the WAM is controlled by setting commanded
joint torques. These commanded torques are passed to an inner feedback loop implemented in hardware on
the WAM which sets the motor torques. The algorithms described in this report were implemented in C++
and interfaced to the WAM through this library.

3 Manipulator Control

In cooperative activities such as the one considered in this project, where multiple manipulators must interact
with each other, it is important that the manipulator offers a degree of compliance. This compliance means
that the manipulator is able to tolerate unexpected external forces, which displace the arm from its desired
configuration, without generating excessively large joint torques or causing failure of the control algorithm.
In addition, for the manipulator to be of practical use, we must be able to specify the desired end effector
location in absolute space. This requires that the control algorithm solve the inverse kinematics problem
and calculate the corresponding joint angles.

3.1 Impedance Control

Our chosen control strategy is impedance control, which meets both of these requirements. Impedance control
implements a virtual spring and damper between the end effector position x and the desired end effector
position xd. Joint torques are calculated using the end effector position error x − xd. The end effector
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position x can be calculated using forward kinematics and explicit calculation of the inverse kinematics is
avoided because the transformation from end effector force to joint torques requires only the transpose of
the manipulator Jacobian J .

In the case of a four degree of freedom manipulator such as the WAM, the manipulator has an extra
degree of freedom with respect to setting the a three-dimensional desired end-point location. Therefore,
specification of a desired endpoint location is insufficient to determine a unique set of joint angles q. With
impedance control engaged, an external force applied to the WAM at any point other than the endpoint will
cause the links to move in such a way that x remains constant while q varies. Conversely, the set of joint
angles q when the endpoint arrives at the desired location is a function of the initial value of q and hence
the initial xd.

For the object transfer task, we wish to position the manipulator’s hand in a particular orientation when
picking up or transferring the object. This means that we wish to place a constraint on the joint angles q as
well as on the end effector position x. We apply this extra constraint by implementing PD control to drive
joint angle q3 towards a desired value.1

This is equivalent to impedance control on a compound state a = [x, y, z, q3]
T
, which gives the following

control law for the joint torques τ , where g represents the joint torques required to counteract gravity and
ad is the desired compound state. The matrices Kp and Kd are the proportional and derivative gains
respectively. They represent the stiffness of the virtual spring and the damping coefficient of the virtual
damper and allow us to modify the transient response of the manipulator.

τ = g − JT (Kp (a − ad) + Kdȧ)

Note that the dynamics of the endpoint under impedance control are not simple. The motion required
of the manipulators links to achieve a certain endpoint motion means that the effective mass in the virtual
spring and damper system is a complex function of the joint angles. Therefore, the dynamics are highly
non-linear. However, for reasonable arm configurations, Kp and Kd can be used to qualitatively control the
manipulator’s dynamic response in a way similar to that which we would expect for a linear system.

3.2 Trajectory Planner

The impedance controller described above allows us to specify a desired endpoint location and Kp and
Kd can be used to tune the dynamic response. However, this level of control is insufficient to produce
reasonable trajectories for large movements, particularly if obstacles, self-impingement and singularities are
to be avoided. We therefore implemented a trajectory planner which operates at a level above the impedance
controller. This planner allows the user to specify a trajectory as a function of time and simply updates
the desired end effector position accordingly in real time. This allows smooth trajectories in both space and
time.

4 Estimation for Cooperative Manipulation

Sec. 1 describes a manipulation task that involves passing an object from one manipulator to another. This
task is described in more detail in Sec. 5. In order to achieve this, it is essential to be able to estimate the
state of each manipulator and its grasp. The grasp state is particularly important, as different portions of
the task, such as moving away from the hand-over point, should not be attempted until successful transfer
has occurred. The success, or otherwise, of the transfer can only be ascertained by determining the grasp
state of the manipulator.

1Note that ideally we would like to specify the hand orientation directly, such as the angle between the local ‘up’ direction

for the hand and the upward vertical. However, the transformation from this angle to joint angle, and the differentiation thereof

to obtain the Jacobian, is far from straightforward. Joint angle q3 is the rotation at the elbow along the axis of the upper arm

link and approximates this angle well for most arm configurations. Specifically, the two are very close at angles near nπ

2
for

integer n, which are common angles of interest for manipulation tasks.
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The state of the system can be represented conveniently using both continuous and discrete variables.
Continuous variables represent the position and velocity of the manipulator in Cartesian space, while discrete
variables represent the finite number of different grasp states of the manipulator. The overall system state is
therefore a hybrid of continuous state X, and discrete state, or mode, M. Hybrid Estimation is a technique
that can efficiently estimate the hybrid state of a system given a system model and observations. An overview
of the technique is given in the following subsection.

4.1 Hybrid Estimation Overview

Hybrid estimation aims to determine a distribution over the current hybrid state given the inputs to the
system and the observations y so far i.e. p(Mt,Xt|y1:t).

Central to the hybrid estimation technique are hybrid models. There are many alternative modeling
formalisms, however for this project we use Probabilistic Hybrid Automata (PHA). An example of a PHA
is shown in Fig. 2. This is a simple model of an actuator component. It can be seen that the actuator
has two discrete modes, ok and failed. In each of these modes the system has a different set of equations
describing the continuous state evolution. Note that these equations are discrete-time, and involve random
noise processes that are used to model process noise and observation noise.
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Figure 2: An example Probabilistic Hybrid Automaton (PHA).

The discrete state evolution is described by the transitions showed in Fig. 2. Depending on which of the
guards g1 or g2 is satisfied, the probability of transitioning from one discrete mode to another at each time
step is given by the probability shown in the model. The guards can be conditioned on inputs to the system
or the state of the system. For example, it is possible to model systems where a command to the system
will cause a particular transition to occur with high probability, but may alternatively cause an unintended
transition with low probability. For the case of transition guards conditioned on the state, it is possible to
model transitions that, for example, can only occur when the system’s position is in a certain region.

The PHA modeling formalism therefore can be used to described many different systems, and is far more
expressive than both purely continuous models, and purely discrete models. Hybrid estimation combines
techniques from continuous estimation and discrete mode estimation to reason efficiently about these models.
The approach is summarised here.

The hybrid state can be expressed as a sum of distributions over mode trajectories.

p(Mt,Xt|y1:t) =
∑

M1:t−1

p(M1:t,Xt|y1:t). (1)

We can then expand each summand as a product of the probability of the mode trajectory M1:t and a
distribution over the continuous state, conditioned on this mode trajectory:

p(M1:t,Xt|y1:t) = p(M1:t|y1:t)p(Xt|M1:t,y1:t) (2)
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A key observation is that, given a mode trajectory M1:t, the continuous system equations are fully
specified. We can therefore use an existing continuous estimation technique, such as a Kalman Filter, to
estimate the second term, p(Xt|M1:t,y1:t). The first term can be calculated using the belief state update
equation:

p(M1:t|y1:t) ∝ PO(yt) · PT (Mt) · p(M1:t−1|y1:t), (3)

For details on the calculation of the observation function PO and the transition function PT please refer
to [1] and [2].

Exact hybrid estimation would require us to track a Kalman Filter for every possible mode trajectory.
However this is normally infeasible, since the number of mode trajectories increases exponentially with
time. All practical hybrid estimation algorithms therefore carry out approximate hybrid estimation. This
involves retaining only some of the possible mode trajectories; for example, in k-best enumeration, only the
k trajectories with the highest posterior probability are retained. While this method approximates the true
hybrid belief state, it is often possible to capture most of the belief state in a relatively small number of
mode trajectories, leading to small approximation error.

In the following section we describe how the cooperative manipulation scenario can be modelled using
the PHA formalism.

4.2 Modelling Cooperative Manipulation

In the cooperative manipulation scenario, we consider the case where each manipulator carries out estimation
of its state using the observations from its encoders and full knowledge of the commands issued to both
manipulators. In this case, the encoder readings, and therefore the state, of the other manipulator is not

available. This is typical of many cooperative robotic scenarios where there is full knowledge of the planned
task but sensor readings are not shared across agents. We consider hybrid estimation for WAM2, the recipient
of the object.

In this scenario, the state, observations and commands are defined as follows:

• Continuous state: This consists of the position x and velocity ẋ of the endpoint

• Discrete mode: This consists of the grasp state of the object M . In the mode empty, WAM2 does not
have the object. In the mode WAM2, WAM2 has the object, and WAM1 does not. In the mode both,
both WAM1 and WAM2 have the object.

• Observations: The observations are denoted y and ẏ and correspond to observations of x and ẋ from
the encoders.

• Continuous commands: These are denoted xd1 and xd2, corresponding to the desired position for
WAM1 and WAM2 respectively

• Discrete commands: u denotes the commands issued to the manipulators’ hands. The possible values
are WAM1-OPEN, WAM1-CLOSE, WAM2-OPEN and WAM2-CLOSE.

The discrete mode defined above describes three possibilities for the grasp state. Note that the empty

state does not make any assertions about whether or not WAM1 has the object; without a grasp on the
object, WAM2 has no information about the grasp state for WAM1.

While the continuous state of the manipulator is observed directly, subject to observation noise, the grasp
state is not, since there are no sensors in the hand. The main aim of hybrid estimation in this context, then,
is to estimate the grasp state, represented by the discrete mode of the system.

The inner-loop impedance controller has been used here to raise the modelling and estimation problem
to a higher level of abstraction. While it would certainly be possible to perform hybrid estimation on
the system at the level of torque inputs and raw encoder data, the modelling effort would be considerably
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increased. With an impedance controller, the endpoint dynamics can be described simply using known three-
dimensional damping and stiffness terms. For a known grasp state, we consider the input to the continuous
dynamics to be the desired positions xd1 and xd2, and the outputs are the true position x and velocity ẋ.
This is shown in Fig. 3.
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Figure 3: Schematic of the WAM control structure.

Furthermore, by using this inner-loop controller, the effect of modelling errors is reduced. For example,
small errors in the gravity compensation term can lead to steady state controller errors that would not be
anticipated by an estimation algorithm whose underlying model has gravity compensation and gravity effects
perfectly balanced. By using relatively high proportional gains on the position error, these steady-state errors
can be greatly reduced, reducing the effect of modelling errors.

4.3 Model Definition

In this section, the definition of the manipulator model is given by describing the continuous dynamics and
outgoing transitions for each discrete mode.

4.3.1 Mode: empty

In this mode WAM2 moves freely without a grasp on the object. The input/output dynamics can be
expressed in the form of a differential equation as:

ẍ =
1

m2

[KP2(xd2 − x) − KD2(ẋ)] (4)

This model assumes that gravity is compensated for perfectly, meaning that the only remaining terms
are those due to the impedance controller. The use of the impedance controller allows us to model the
endpoint without considering the configuration of the robot, as long as singularities are avoided. In the
equation above, m2 is the effective mass of the endpoint of WAM2. This mass is approximated as being
constant, and was estimated by observing the dynamics of the system under impedance control in typical
configurations. While this approximation is not insignificant in general, the value of the mass m2 does not
effect the steady-state behavior of the system. Hence during the low-speed tasks being performed in the
scenario under consideration, this is a good approximation. A discrete-time approximation of this differential
equation is used in the PHA model for the purposes of hybrid estimation.

The discrete mode transitions are as follows. The hand commands WAM1-OPEN and WAM2-OPEN clearly
have no effect on the grasp state. In both of these cases, the discrete mode remains as empty with probability
one. The command WAM1-CLOSE also has no effect; since WAM2 does not have a grasp on the object, it is
unaffected by whether or not WAM1 has a grasp on the object or not.

If the command WAM2-CLOSE is issued, the hand on WAM2 closes. There are three possible outcomes of
this action regarding the grasp state. Firstly, the hand can close but without a grasp on the object. In this
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case the grasp state remains as empty. Second, the hand can grasp the object, and the object is not being
held by WAM1. In this case the grasp state transitions to WAM2, since now only WAM2 is grasping the object.
In the third case, WAM2 grasps the object, which is currently held by WAM1. Now both manipulators have
the object, and hence the grasp state transitions to both.

Table 1 shows the modeled transition probabilities for each discrete mode.

Command
empty WAM2 both

empty WAM2 both empty WAM2 both empty WAM2 both

WAM1-OPEN 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 0.8
WAM1-CLOSE 1.0 0.0 0.0 0.1 0.8 0.1 0.0 0.0 1.0
WAM2-OPEN 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
WAM2-CLOSE 0.8 0.1 0.1 0.0 1.0 0.0 0.0 0.0 1.0

Table 1: Transition probabilities

In the cases where the mode transitions are not certain, the exact probabilities were specified using
modelling judgement.

Note that this transition model is consistent with the fact that WAM2 has no knowledge of WAM1 except
the commands being applied to it. Without this knowledge, there is no way of knowing the result of the
hand closing. Hence hybrid estimation must be used to infer the result from the observations.

4.3.2 Mode: WAM2

In this mode WAM2 moves freely, but has a grasp on the object. WAM1 does not have a grasp on the object.
As a result the effective mass of the endpoint is increased, and in addition a force due to the weight of the
object is exerted on the endpoint. The dynamics are now modelled as:

ẍ =
1

m2 + mobj

[−mobjgek + KP2(xd2 − x) − KD2(ẋ)] (5)

where ek is the vertical unit vector.
In this mode the commands WAM2-CLOSE and WAM1-OPEN have no effect, and the discrete mode will stay

as WAM2 with probability one.
The command WAM2-OPEN will cause the hand to drop the object. This is modelled as having probability

one.
The command WAM1-CLOSE will cause the hand of WAM1 to close. Again, since the location of WAM1 is

unknown, the outcome of this action is unknown. The two possible results are, firstly, that WAM1 does not
grasp the object, in which case the mode remains as WAM1, and second, that WAM1 does grasp the object.
In the latter case the discrete mode transitions to both.

4.3.3 Mode: both

In this mode WAM1 and WAM2 both have a grasp on the object. The compliant nature of the impedance
control means that this configuration is safe even if the desired positions of the two manipulators are not
identical. The forces applied by the impedance controller on WAM1 are transmitted through the object to
the endpoint of WAM2.

The resulting dynamics are:

ẍ =
1

m1 + m2 + mobj

[(−mobjgek + KP2(xd2 − x) − KD2(ẋ) + KP1(xd2 − x) − KD1(ẋ)] (6)

Here the effective mass has been increased by m1, the effective mass of WAM1. The forcing terms are due
to the weight of the object, the force applied by the impedance controller on WAM2, and the force applied
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by the impedance controller on WAM1, respectively. Note that we assume perfect gravity compensation for
both WAM1 and WAM2, but the mass of the object is not compensated for.

In this mode, the commands WAM1-CLOSE and WAM2-CLOSE have not effect. In the case of WAM2-OPEN, the
hand on WAM2 releases the object, and so the mode transitions to empty. This is modelled as occurring
with probability one.

The most interesting case is that of WAM1-OPEN. In this case we assume that WAM1 releases its grasp
with probability one. The expected outcome would be that WAM2 keeps hold of the object, and hence the
mode transitions to WAM2. However experience showed that in a few cases, WAM2 did not have a firm enough
grasp on the object, and that without the support of WAM1, the object fell through the hand of WAM2.
Hence the model represents the fact that a WAM1-OPEN command can result in a transition to either WAM2 or
empty.

These definitions fully specify the model, given known values for m1, m2, mobj , KP1, KP2, KD1 and
KD2.

5 Results

The tasks under consideration in this project is one where the first manipulator, WAM1, passes an object
to the second manipulator, WAM2. Impedance control and trajectory planning as described in Sec. 3 were
implemented for both manipulators. A trajectory was designed by specifying a number of way-points so as
to enable transfer of the object. This trajectory can be summarized as follows:

1. WAM1 moves to pick-up point and grasps the object

2. WAM1 moves to the hand-over point with the object

3. WAM2 moves to the hand-over point

4. WAM2 grasps the object

5. WAM1 releases the object

6. WAM2 pulls away slightly to determine whether WAM1 has released successfully

7. If WAM1 released successfully, WAM2 moves to the the drop-off point

8. WAM2 releases the object

With this controller, successful object transfer was achieved in more than 95% of cases. Experiments
demonstrated that compliance in the controllers was essential, as positioning errors of the order of a few
centimeters were common. These steady-state errors came from a number of sources, including inaccurate
encoder initialization, inaccuracies in gravity compensation, and friction. However the use of the impedance
controller allowed the arm endpoints to comply when the grasp was made.

In the rare failure cases, excessive initialization error caused WAM2 to grasp the object poorly (e.g. at
an angle), or to grasp WAM1’s hand instead. Hence when WAM1 released, the object would fall. Typi-
cally however, these failures would be injected artificially as needed to demonstrate the hybrid estimation
capabilities.

Hybrid Estimation was implemented for WAM2. Since the newly-acquired WAM hardware does not yet
have the necessary architecture in place for the implementation of our hybrid estimation algorithms online,
hybrid estimation was carried out off-line, using data acquired from the WAMs. In all of our experiments
hybrid estimation tracked 20 mode trajectories and the hybrid update step took less than 0.1 seconds. This
is the time step used in the dynamic model, so hybrid estimation could be used as a real-time estimator in
this situation.
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We present results for the following four scenarios.

• transfer The transfer is carried out as planned.
• missed WAM2 fails to grasp the object at the hand-over point, but carries on regardless.
• stuck WAM1 fails to release the object at the hand-over point, and the transfer is aborted.
• slipped Both manipulators grasp the object, but when WAM1 releases the object, it slips through

WAM2’s hand.

The results are shown in Figs. 4 through 7. In these figures, the top plot shows the continuous-valued
information available to the hybrid estimator, while the middle plot shows the discrete-valued hand com-
mands, also available to the estimator. The hand commands are issued over a period of approximately 1s,
with a typical open or close operation lasting approximately 0.5s. The third plot shows the Most likely A

Posteriori (MAP) discrete mode. The true discrete mode is also shown. While the estimation algorithm
maintains a distribution over discrete modes at a given time step, the MAP estimate is the one often used
in a control algorithm.
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Figure 4: Hybrid estimation results for transfer scenario, with object mass of 2.050kg
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Figure 5: Hybrid estimation results for missed scenario, with object mass of 2.050kg

These results show that in all four cases, hybrid estimation tracks the true mode very accurately, with
only minor differences in the timing of the mode transitions. Even in the slipped scenario, the most subtle
of the four, the algorithm detects that WAM2 had a grasp on the object until WAM1 released, at which
point the object slipped through the hands of both manipulators. The changes in discrete mode manifest
themselves as relatively subtle changes in a set of complex and noisy observations, yet hybrid estimation is
able to infer the discrete modes accurately by using the Probabilistic Hybrid Automaton model.

It would surely be possible to design an ad hoc estimator explicitly for detecting the presence, or otherwise,
of an object in the manipulator’s grasp. However the hybrid estimation approach is able to estimate the
full state of the system in a probabilistically sound manner, by reasoning about the entire model. The only
human design required was in the modelling phase, and creating accurate models is typically much more
reliable than creating purpose-built ad hoc estimators. Furthermore, purpose-built estimators have been
shown many times to lack robustness when used in situations that were not explicitly conceived of by the
designer. We believe, therefore, that the hybrid estimation approach is a powerful tool for state estimation
in this context.
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Figure 6: Hybrid estimation results for stuck scenario, with object mass of 2.050kg

5.1 Scenario Walk-through

To gain insight into the observation data available to hybrid estimation and the way in which it is used to
track the state of the system, we present a qualitative walk-through of the data from the transfer scenario,
shown in Fig. 4. Initially, both manipulators move very differently, so the desired position traces are very
different, but the observed position of WAM2 follows its desired trajectory very closely. When stationary, the
small error is due to inaccuracies in the gravity compensation parameters and to un-modelled joint friction.
When the manipulator is moving, the system dynamics also produce a transient error. The system starts in
the none mode and hybrid estimation can track this trivially, since no commands are issued.

At 33s, the trajectories of the two manipulators come very close together for the hand-over of the object.
We see that WAM2 closes its hand at 34s and WAM1 then opens its hand at 36s. Between these two times
the endpoint position of WAM2 is pulled between the two desired positions by the action of grasping the
object and hybrid estimation uses this information to diagnose that the grasp mode is both.

Once WAM1 releases its grasp at 36s, the endpoint position of WAM2 moves back towards its desired
position in the horizontal plane, but sags in the vertical direction due to the mas of the object, which is not
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Figure 7: Hybrid estimation results for slipped scenario, with object mass of 2.050kg

accounted for by gravity compensation. This information allows hybrid estimation to determine that the
grasp mode is now WAM2.

Between 38s and 46s, WAM2 performs an exploratory move to try to determine whether or not WAM1
has released its grasp on the object: we can see xd2 move away from xd1. In the case of the stuck scenario,
where WAM1 does not release the object, the external force provided by WAM1 would prevent the endpoint
of WAM2 from following its desired trajectory, as in Fig. 6. Here, however, this is not observed, so hybrid
estimation can confirm that the grasp state is indeed WAM2.

At 55s, WAM2 opens its hand and releases the object. With this reduction in mass, the endpoint
moves upwards towards its desired position and hybrid estimation is able to deduce that the grasp state has
transitioned to empty.
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6 Discussion and Analysis

In general, estimation algorithms are limited fundamentally by the amount of information available in the
observations. For example, distinguishing the case where a very light object is grasped, from the case
where the hand is empty will be extremely difficult, because the behavior of the system, and therefore the
observations, will be almost unchanged by the presence of the object.

In particular, the signal to noise ratio of the observations sets the limit on the range of situations in which
hybrid estimation can reliably track the correct mode. In the object transfer scenario, if the object mass is
large compared to the virtual spring stiffness, the observation signal used by hybrid estimation to distinguish
between the different discrete modes is large. In these situations hybrid estimation is very accurate.

The observation signal is noisy, however. If the magnitude of the noise is comparable to that of the
observation signal (low signal to noise ratio), then hybrid estimation’s task is very difficult. The noise in
this signal originates from two sources: process noise and measurement noise. Hybrid estimation models
both of these sources, but the model uses zero-mean Gaussian random variables. The manipulator has one
significant source of process noise which is non-Gaussian. This is the steady-state error, which is due partially
to inaccuracies in the parameter values used to calculate the gravity compensation torque, and partly due
to joint friction, which is not accounted for in the control law. We can reduce the steady state error by
increasing the stiffness of the virtual spring, which in turn reduces the un-modelled process noise. Therefore,
to improve the chances of hybrid estimation producing a correct diagnosis, we should maximize the signal
to noise ratio by maximizing the object mass, and maximizing the virtual spring stiffness.

The results in the previous section demonstrated that hybrid estimation can be used successfully with
an object mass of 2.05kg. Based on the above analysis, we would expect the performance to degrade as the
object mass is reduced and we would like to investigate this. Figs. 8 through 13 show the performance of
the algorithm with objects of mass 1.175kg and 0.550kg.

When compared to the results with an object mass of 2.050kg, it is immediately clear that hybrid
estimation performs better with large object masses. The trend is most obvious in Figs. 6, 10 and 13,
which show the stuck scenario. Here the proportion of time for which hybrid estimation’s MAP is incorrect
increases as the object mass decreases. The true mode is initially empty, but transitions to both when
WAM2 grasps the object at t = 34s. With the largest mass, hybrid estimation detected this transition
almost immediately. As the mass is decreased, the observations are less informative, and hybrid estimation
requires more evidence to detect the transition. This corresponds to an increase in the delay from the time
of the true mode transition to when this is detected by hybrid estimation. Note that when WAM2 begins its
exploratory motion at t = 38s, the evidence becomes more informative and hybrid estimation is soon able
to detect the mode transition.

The results also confirm that the task of distinguishing the WAM2mode from the emptymode is significantly
more difficult than that of distinguishing the both mode from the empty mode. Considering the missed

and stuck scenarios, Figs. 5 and 6 show that with an object mass of 2.050kg, hybrid estimation performs
perfectly. At 1.175kg and 0.550kg, the diagnosis is not perfect. At each of these two masses, hybrid estimation
more accurately tracks the transitions between the both and empty modes in the stuck scenario (Figs. 10
and 13), than it does the transitions between the WAM2 and empty modes in the missed scenario (Figs. 9
and 12).

Fig. 14 shows the variation in the percentage of diagnostic errors as a function of the mass of the object,
for the transfer, missed and stuck scenarios. The percentage of diagnostic errors is determined by the
number of time-steps during each trial that hybrid estimation’s MAP mode did not match the true mode.
The graph confirms that for each scenario, the performance of the hybrid estimator improves as the mass of
the object is increased.

7 Conclusions

In this project we considered the problems of control and estimation for a multiple manipulator system. The
scenario under investigation was one in which an object is to be passed from one manipulator to another.
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Figure 8: Hybrid estimation results for transfer scenario, with object mass of 1.175kg

An inner loop impedance controller provided compliance and inverse kinematics, while a trajectory planner
was layered on top to provide smooth trajectory control. A hybrid estimation algorithm was used to track
the hybrid state of the system and by reasoning on a physical model of the system was able to infer the
grasp state, which was not directly observable. This architecture was implemented in hardware with a pair
of 4-DOF manipulators.

Results showed that the system is capable of dependable transfer of an object from one manipulator to
the other and that the hybrid estimator is able to reliably track the state of the system. In the case when
failures occurred, the estimator correctly detected the failure mode and could be used to provide feedback
to initiate recovery.

The effects of reducing the information available to the estimator, by lowering the mass of the object,
were also investigated. Results showed that the percentage of diagnostic errors increased as predicted.
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Figure 9: Hybrid estimation results for missed scenario, with object mass of 1.175kg
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Figure 10: Hybrid estimation results for stuck scenario, with object mass of 1.175kg
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Figure 11: Hybrid estimation results for transfer scenario, with object mass of 0.550kg
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Figure 12: Hybrid estimation results for missed scenario, with object mass of 0.550kg
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Figure 13: Hybrid estimation results for stuck scenario, with object mass of 0.550kg
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Figure 14: Performance of hybrid estimation as a function of object mass.
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