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In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars
pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimiza-
tion problem via a direct numerical method. Our main contribution is to formulate the trajectory optimiza-
tion problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem,
specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of
convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence,
the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time appli-
cations. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient
approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the fea-
sibility/infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate
of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity
to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a
fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain
almost fuel optimal solutions in real-time.

I. Introduction

Our earlier papers [1,2] presented a convex programming algorithm to solve the powered descent guidance (PDG)
problem for Mars pinpoint landing. The PDG algorithm solves the powered descent minimum fuel trajectory opti-
mization problem via a direct numerical method. Our main contribution in [1] is the formulation of the trajectory
optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem,
specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex
programming, and there are efficient SOCP solvers with deterministic convergence properties. Consequently, the re-
sulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. It is also
shown in Ref. 3, that when compared with more traditional polynomial based guidance algorithms such as the ones
used in Refs 4–6, the optimal trajectories obtained from this PDG algorithm can lead to significant fuel savings as well
as significant improvements in the lateral divert capability. In this paper, we present enhancements on this algorithm
and the status of the algorithmic development towards an onboard PDG algorithm.

In order to ensure a safe landing on Mars, landing sites for first-generation Mars missions such as Viking and Mars
Pathfinder were determined by considering the scientific merit of various sites as well as the overall terrain quality
(e.g., slope, roughness). As these missions were exploratory in nature, the exact location of the landing site within the
error ellipse was not critical. For example, landing accuracy was approximately 150km for Mars Pathfinder and 35km
for the Mars Exploration Rovers. The Mars Surface Laboratory mission scheduled for launch in 2009 will further
increase landing accuracy resulting in a delivery of the lander to within 10km. In next generation Mars missions the
need to perform pinpoint landing will be required. Further improvements in landing accuracy require enhancements
to heritage flight systems and are discussed in detail in Ref. 7. For example, it may be required to land next to
scientifically interesting targets located within hazardous terrain, or to land in close proximity to other pre-positioned
surface assets such as a rover from a previous mission. Further, human missions will require the crew to land near
pre-positioned cargo or fuel.

Mars pinpoint landing involves an entry phase through the Mars atmosphere, a phase of descent with a parachute,
and then the final phase of powered descent, which is initiated with the parachute cutoff. The PDG problem for
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pinpoint landing is defined as finding the fuel optimal trajectory that takes a lander with a given initial state (position
and velocity) to a prescribed final state in a uniform gravity field, with magnitude constraints on the available net
thrust, and various state constraints. A simplified, one-dimensional version of this problem is also known in the
optimal control literature as the soft landing problem [8], and its solutions have well known characterizations (see pp.
28-33 in Ref. 9). However, to the best of our knowledge, a closed form solution of the thrust profile is not available
for the general three dimensional case with realistic state and control constraints. A trajectory based on a quartic
polynomial in time was used during the Apollo mission [4]. Various other approaches to obtain both numerical and
approximate solutions of the pinpoint landing terminal guidance problem have been described over the last few years.
More recently, in Ref. 10 the first order necessary conditions for the problem are developed and it is shown that the
optimal thrust profile has a maximum-minimum-maximum structure. Numerical solutions are obtained for various
initial conditions by converting the guidance problem into a constrained non-convex parameter optimization problem
using both direct collocation and direct multiple shooting methods. In Ref. 5 Legendre pseudospectral methods are
used to develop a numerical solution to the pinpoint landing guidance problem. In Ref. 11 an approximate analytical
solution is developed by solving a related optimal control problem that does not utilize a minimum fuel cost functional.

Direct numerical methods for trajectory optimization are attractive because explicit consideration of the necessary
conditions (adjoint equations, transversality conditions, maximum principle) are not required [12]. The infinite dimen-
sional optimal control problem is directly converted into a finite dimensional parameter optimization problem [13–15],
which is then solved via a nonlinear programming method. However, real-time onboard solution of a nonlinear pro-
gram via a general iterative algorithm may not be desirable without explicit knowledge of the convergence properties
of the algorithm. As Mars pinpoint landing requires real-time onboard computation of the optimal trajectory, it is es-
sential to exploit the structure of the problem to design algorithms with guaranteed convergence to the global optimum
with a deterministic convergence criterion. This lead us, in our prior work [1,2], to formulate the problem in a convex
optimization [16, 17] framework. Specifically, we formulated the resulting parameter optimization problem as a sec-
ond order cone programming problem (SOCP) that is a subclass of convex programming [18]. SOCP problems have
low complexity, and they can be solved in polynomial time. There exist algorithms, such as interior-point methods
[19–21], that compute an optimal solution with a deterministic stopping criteria, and with prescribed level of accuracy.
Therefore, numerical SOCP solution algorithms are very well-suited for real-time onboard computations.

We first summarize the formulation of the problem given in [1], then the formulation of the additional constraints
to prevent inter-sample subsurface flight and the incorporation of the rotation rate of the planet into the formulation of
the problem are presented. The resulting optimization problem for PDG is an SOCP for each time-of-flight (time from
the start to the end of the maneuver). Hence an optimal solution can be obtained for each time-of-flight by finding
the global optimum solution of this SOCP. An outer iteration, which is a simple line search, must be applied to find
the optimal time-of-flight corresponding to the minimum fuel consumption. This can become quite costly since the
optimal fuel computation for each time-of-flight requires the solution the SOCP. We devised a method to approximate
the optimal time-of-flight and it only requires the solution of the SOCP four times. This approach is motivated from
the observations that the time-of-flight versus the optimal fuel (per time-of-flight) relation can be approximated by a
quadratic function in a close neighborhood of the minimum feasible time-of-flight and that the optimal time-of-flight
is also in this vicinity of the minimum time-of-flight. Therefore, once a quadratic is uniquely fitted by using three
time-of-flight values, the time that minimizes the quadratic can be obtained easily, as well as the optimal minimum
fuel trajectory corresponding to this time-of-flight in a fourth solution of the SOCP.

However a method to choose optimal time-of-flight requires the knowledge of minimum time-of-flight when a
feasible trajectory exists or the detection of the infeasibility of the problem. In Ref. 8, a computationally inexpensive
algorithm is given to determine the minimum fuel trajectories for the one-dimensional version of the PDG problem,
that is along the vertical channel only. We utilize this solution to develop a method to detect whether or not the PDG
problem is feasible. If it is feasible then we solve for the fuel optimal trajectory.

We also provide an approach for fuel-limited targeting, which is necessary when there is insufficient fuel to reach
the landing target. In this case, we would like to ensure safe landing, while minimizing the final distance to the target.
We show that this problem can also be solved by performing SOCP optimizations, and is hence amenable to onboard
implementation.

Finally we present an initial table lookup method concept to approximately solve the SOCP resulting from the
PDG problem. This approach is numerically very simple to implement and execute onboard and it does not require
significant onboard computational resources. Consequently it is a very promising approach towards developing an
onboard PDG algorithm that generates almost fuel optimal solutions on a real-time processor.



II. Problem Formulation

The minimum fuel powered descent trajectory optimization problem associated with the pinpoint landing is de-
scribed as follows (see [1] for the details):

Problem 1.

max
t f , Tc(·)

m(t f ) = min
t f , Tc(·)

Z t f

0
‖Tc(t)‖dt subject to

r̈(t) = g+Tc(t)/m(t), ṁ(t) =−α‖Tc(t)‖
0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2,

‖rd(t)‖ ≤ βrv(t)
m(0) = mwet , m(t f )≥ 0, r(0) = r0, ṙ(0) =ṙ0, r(t f ) = ṙ(t f ) = 0.

In the above problem,

α =
1

Ispge cosφ
, ρ1 = nT1 cosφ, ρ2 = nT2 cosφ

where φ is the cant angle for the thrusters, n is the number of thrusters, Isp is the specific impulse, mwet is the mass of
the lander with initial available fuel, ge is the Earth’s gravitational constant, T1 and T2 are lower and upper limits of
the thrust force that can be provided by each thruster, r0 ∈ IR3 and ṙ0 ∈ IR3 are initial position and velocity vectors for
the lander relative to the target landing point at the start of powered descent maneuver, β = tanγ where γ ∈ (0,π/2)
is the glide slope angle, rv ∈ IR is the altitude and rd ∈ IR2 is downrange position vector of the lander such that
r = [rv, rT

d ]T . Note that more general state constraints (constraints on the position and velocity vectors such as bounds
on the velocity magnitude) can be imposed in this formulation [1], but we only impose the glide slope constraint in
this paper for simplicity.

Remark 1. In Problem 1, the inequality 0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2 defines nonconvex constraints on the control input. �

In [1], it is shown that the following relaxed version of Problem 1, which is a convex optimization problem, can
be solved to obtain the optimal solution of the PDG problem.

Problem 2.

min
t f , Tc(·), Γ(·)

Z t f

0
Γ(t)dt subject to

ṁ(t) =−αΓ(t), (1)
‖Tc(t)‖ ≤ Γ(t), (2)

0 < ρ1 ≤ Γ(t)≤ ρ2, (3)

r̈(t) = g+Tc(t)/m(t),
‖rd(t)‖ ≤ βrv(t)

m(0) = mwet , m(t f )≥ 0, r(0) = r0, ṙ(0) = ṙ0, r(t f ) = ṙ(t f ) = 0.

The following lemma describes the main technical result that lead to the PDG algorithm (see [1]).

Lemma 1. Consider a solution of Problem 2 given by (t∗f , T ∗c (·), Γ∗(·)). Then, (t∗f , T ∗c (·)) is also a solution of
Problem 1 and ‖T ∗c (t)‖= ρ1 or ‖T ∗c (t)‖= ρ2 for t ∈ [0, t∗f ].

Lemma 1 implies that the main nonconvex constraint on the thrust magnitude in Problem 1 is convexified by
replacing it with (2) and (3) in Problem 2 via the introduction of a scalar slack variable Γ. Furthermore, Lemma 1
presents a relation between the optimal solutions of Problem 1 and Problem 2. It states that if there exists an optimal
solution for Problem 2, then there also exists one for Problem 1 and it can be obtained directly from the optimal
solution of Problem 2. Also, note that the set of admissible controls of Problem 2 strictly contains the set of admissible



controls of Problem 1. Consequently, one can solve Problem 2 with convex control constraints to obtain the solution
of Problem 1 with non-convex control constraints. See Figure 1 for an illustration of the constraint convexification in a
two-dimensional control space: The nonconvex constraint set for the control input, represented by the shaded annulus,
is mapped into a convex set, represented by the cone, via the slack variable Γ.
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Figure 1. Convexification of Thrust Magnitude Constraint

In Problem 2 the state and constraints define convex feasible regions. However the dynamics are nonlinear due
to the time variation of the mass due to thrusting. This will lead to nonlinear equality constraints in the discretized
version of the problem, which will be solved numerically. Again in [1], it is shown that this issue can be resolved via
a change of variables to obtain the following form of the PDG problem:

Problem 3.

min
t f , u(·), σ(·)

Z t f

0
σ(t)dt subject to

r̈(t) = u(t)+g ż(t) =−ασ(t) ,
‖u(t)‖ ≤ σ(t)

µ1(t)
[

1− (z(t)− z0(t))+
(z(t)− z0(t))2

2

]
≤ σ(t)≤ µ2(t) [1− (z(t)− z0(t))] ,

z0(t)≤ z(t)≤ ln(mwet −αρ1t) ,
‖rd(t)‖ ≤ βrv(t)

z0(t) = ln(mwet −αρ2t), µ1(t) = ρ1e−z0(t), µ2(t) = ρ2e−z0(t)

z(0) = lnmwet , r(0) = r0, ṙ(0) = ṙ0, r(t f ) = ṙ(t f ) = 0.

In the above problem z = lnm, u = Tc/m, and σ = Γ/m. For a given time-of-flight t f , Problem 3 has all its equality
and inequality constraints defining convex feasible regions in the state and control space and it has a convex cost
function. Therefore, it can be converted into a finite dimensional convex optimization problem, particularly into an
SOCP, after an appropriate discretization. Once the numerical algorithm is devised to solve the optimal fuel trajectory
design problem for each t f , a line search can be applied to find the “best” time-of-flight t∗f [1, 2].



III. Discretization of Problem 3

This section describes the discretization of the optimal control problem 3. Our discretization is based on piecewise
linear control input on a number of time intervals with equal length. More precisely, given ∆t > 0 and the correspond-
ing time instances tk = k∆t, k = 0, ...,N,

u(t) = uk +(uk+1−uk)τ
σ(t) = σk +(σk+1−σk)τ

τ =
t− tk

∆t
, for t ∈ [tk, tk+1), k = 0, ...,N−1.

Note that the above characterization of control input results in piecewise cubic position trajectories. This discretization
together with the imposition of the control and state constraints at the prescribed time instances tk, k = 0, ...,N lead to
the following finite-dimensional SOCP for a given t f :

Problem 4.

min
u0,...,uN , σ0,...,σN

−zN subject to, for k = 0, . . . ,N,

rk+1 = rk +
∆t
2

(ṙk + ṙk+1)+
∆t2

12
(uk+1−uk)

ṙk+1 = ṙk +
∆t
2

(uk +uk+1)+g∆t

zk+1 = zk−
α∆t

2
(σk +σk+1) ,

‖uk‖ ≤ σk

µ1,k

[
1− (zk− z0,k)+

(zk− z0,k)2

2

]
≤ σ(t)≤ µ2,k [1− (zk− z0,k)] ,

z0,k = ln(mwet −αρ2k∆t), µ1,k = ρ1e−z0,k , µ2,k = ρ2e−z0,k

z0,k ≤ zk ≤ ln(mwet −αρ1t) ,
‖rdk‖ ≤ βrvk

z0 = lnmwet , r(0) = r0, rN = ṙN = 0, N∆t = t f .

Once we have a procedure to compute the fuel optimal trajectory for a given time-of-flight, t f , we use the Golden
search algorithm [22] to determine the time-of-flight with the least fuel need, t∗f . This line search algorithm is motivated
by the observation that the minimum fuel is a unimodal function of time with a global minimum; see Figure 2 for a
typical t f versus fuel plot. The lower and upper bounds on t f line search are determined by utilizing the vertical
channel only solution given by [8]. We also utilize this vertical channel only solution to develop a method to detect
whether or not the PDG problem is feasible. If it is feasible then we solve for the fuel optimal trajectory.

IV. Avoiding Inter-Sample Glide Slope Constraint Violation due to Time Discretization
and Mars Rotation

One issue that arises due to time discretization is inter-sample subsurface flight. Since the glide slope constraint is
imposed only at a finite number of time instances tk = k∆t, k = 0, ...,N, there is no theoretical guarantee that there will
be no violation of this constraint between the time sample, that is, when t ∈ (tk, tk+1), k = 0, ...,N−1. Particularly this
lack of guarantee can lead to subsurface flight close to the end of the maneuver. Here we impose additional constraints
to make sure that there is no subsurface flight at any time during the flight.

We first formulate a condition that guarantees the satisfaction of the glide slope over all time when the glide slope
is imposed by a single plane. The glide slope constraint can be approximated via a plane in the following generic form

nT r(t)≥ 0, ∀ t ∈ [0, t f ],

where the vector n ∈ IR3 defines a plane approximating the glide slope. The glide slope constraints at the discrete time
instances already guarantees that

nT rk ≥ 0, k = 0, . . . ,N.
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Figure 2. Minimum fuel requirement as a function of the time-of-flight

Now consider the following scalar valued function defined over any time interval [tk, tk+1]

h(τ) = nT r(τ), τ =
(t− tk)

∆t
.

Clearly h(0)≥ 0 and h(1)≥ 0. Next we derive a condition that guarantees h(τ)≥ 0 for all t ∈ (0,1). Since the position
trajectory r is a cubic function of time on t ∈ [tk, tk+1], we have

h(τ) = aτ
3 +bτ

2 + cτ+d

where:

a =
nT (uk+1−uk)∆t2

6
, b =

nT (uk +g)∆t2

2
, c = nT ṙk∆t, d = nT rk.

This implies that:
dh
dτ

= 3aτ
2 +2bτ+ c,

and hence:
h(τ) =

dh
dτ

τ

3
+

1
3

bτ
2 +

2
3

cτ+d.

Since h is continuously differentiable on [0, 1], it reaches a minimum either at the end points or in the interior of the
domain. Since h(0) ≥ 0 and h(1) ≥ 0, if the minimum of h is at one of the end points then h(t) ≥ 0 for all t ∈ [0, 1].
Otherwise, if the minimum occurs at τ∗ ∈ (0, 1) then:

dh
dτ

(τ∗) = 0 ⇒ h(τ∗) =
1
3

bτ∗
2 +

2
3

cτ∗+d.

Hence, letting:

f (τ) :=
1
3

bτ
2 +

2
3

cτ+d,

if f (τ)≥ 0 for all τ∈ (0, 1), then f (τ∗) = h(τ∗)≥ 0. Then, since the minimum value of h is greater than zero, h(τ)≥ 0
for all τ ∈ (0, 1).

We now consider the cases b 6= 0 and b = 0 separately. When b 6= 0, f assumes a minimum value at τo = −c/b
and:

f (τo) =− c2

3b
+d =

cτo

3
+d.



Since d ≥ 0 (from the fact that g(0) ≥ 0), f (τo) < 0 can only happen when c < 0. When this is the case, since
τo ∈ [0, 1],

f (τo)≥
c
3

+d.

Hence when b 6= 0, having the following constraint will guarantee that the plane defined by the vector n won’t be
crossed during the time interval:

c
3

+d ≥ 0. (4)

Now suppose that b = 0. Then f (τ) is linear in τ, so if both f (0)≥ 0 and f (1)≥ 0 then f (τ)≥ 0 for all τ ∈ (0,1)
and, as before, h(τ)≥ 0 for all τ∈ (0,1). We know that f (0)≥ 0 since d > 0. We can ensure that f (1)≥ 0 by imposing
the following constraint:

f (1) =
2c
3

+d ≥ 0. (5)

For both b = 0 and b 6= 0, additional constraints are necessary only when c < 0. In this case, 2c/3 + d < c + 3d and
thus constraint (5) implies (4). In other words, we can guarantee no inter-sample violation of the glideslope for any b
by imposing constraint (5), which is rewritten here as:

nT
(

rk +
2ṙk∆t

3

)
≥ 0. (6)

The conclusion of the above analysis is that, when the constraint given by the inequality (6) is imposed together
with nT rk ≥ 0 and nT rk+1 ≥ 0, the plane defined by the vector n is not crossed over for t ∈ [tk, tk+1]. We can clearly
approximate the glide slope with three planes and implement these constraints for each plane simultaneously to guar-
antee the satisfaction of the glide slope constraints for all times. Inspired by the constraint (6) resulted from the above
analysis, the following inter-sample constraint is used and it is observed to satisfy the actual (non-approximated) glide
slope constraint for all times in all of the simulations we performed:∥∥∥∥rdk +

ṙdk∆t
3

∥∥∥∥≤ β

(
rvk +

ṙvk∆t
3

)
. (7)
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Figure 3. Inter-sample subsurface flight case
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Figure 5. Inter-sample subsurface flight between time samples prevented via additional constraints



Another source of error the rotation rate of the Mars, which is ignored in the dynamics describing the motion of the
lander spacecraft. This is not a major effect considering that the powered descent guidance only lasts a few minutes.
However it can be significant enough to case subsurface flight in some cases. Figures 6 and 7 show a case where
ignoring the Mars’ rotation rate causes the lander to miss its final target point by approximately 30-40 meters (the
solid line is the actual trajectory with the Mars’ rotation whereas the dotted line is the sampled ideal trajectory without
Mars’ rotation). Indeed we can write discretized equations of motion exactly in terms of the piecewise constant control
accelerations and set up the SOCP for PDG accordingly. However since the effects of the Mars rotation is not too
pronounced, the following approximation to the equations of motion over the time intervals [tk, tk+1), k = 0, ...,N−1
is used successfully

r̈ ≈ 2ṙk×ω+(ω× rk)×ω+uk +g for t ∈ [tk, tk+1) (8)

where ω is the Mars angular velocity vector. Since ω is constant, we lump the acceleration terms due to the Mars
rotation into the gravitational acceleration term by defining a piecewise constant gk over [tk, tk+1) and use the following
form of the approximate dynamics in PDG algorithm formulation

r̈ = uk +gk, t ∈ [tk, tk+1)
gk = g+2ṙk×ω+(ω× rk)×ω.

(9)

Figure 8 presents the improved results for the case presented in Figure 7 when the Mars’ rotation is incorporated to
the PDG algorithm by using the equation 9.
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Figure 6. Effects of Ignoring Mars’ Rotation

V. Fuel-limited targeting

In certain cases, there may not be sufficient fuel to reach the landing target. In a mission, this could occur because
the initial condition is further than expected from the target. In this case, we would like to ensure that the spacecraft
lands safely, and minimizes the final distance to the target. This is known as the fuel-limited targeting problem and is
stated in Problem 5. The key differences between this and Problem 1 are: first, that the cost is the final distance from
the target, rather than fuel use; and second, that the downrange position vector is no longer constrained to be at the
target at the final time. The final distance from the target ‖rd(t f )‖ is referred to as the landing error.
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Problem 5.

min
t f , Tc(·)

‖rd(t f )‖ subject to

r̈(t) = g+Tc(t)/m(t), ṁ(t) =−α‖Tc(t)‖
0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2,

‖rd(t)‖ ≤ βrv(t)
m(0) = mwet , m(t f )≥ 0, r(0) = r0, ṙ(0) = ṙ0, rv(t f ) = 0 ṙ(t f ) = 0.

Our approach to solving Problem 5 is as follows. First we relax the nonconvex thrust constraints to give Problem 6,
which is a convex optimization problem. This relaxation is performed in the same way that the original PDG problem
(Problem 1) is relaxed to give Problem 2. We solve this convex optimization problem using existing solvers to get
the closest final location that can be reached given the available fuel, which we refer to as the closest target. Since
we are now minimizing landing error, rather than fuel use, the guarantees of Lemma 1 do not hold. In particular, an
optimal solution to Problem 6 is not necessarily a feasible solution to Problem 5. As a second step, we therefore solve
Problem 8, which is the relaxed minimum-fuel problem with the final location constrained to be the closest target. As
we prove in Lemma 2, the solution to this problem is guaranteed to be an optimal, feasible solution to Problem 5; that
is, we achieve the closest possible final location while obeying the nonconvex thrust constraints.

Problem 6.

min
t f , Tc(·), Γ(·)

‖rd(t f )‖ subject to

ṁ(t) =−αΓ(t), (10)
‖Tc(t)‖ ≤ Γ(t), (11)

0 < ρ1 ≤ Γ(t)≤ ρ2, (12)

r̈(t) = g+Tc(t)/m(t),
‖rd(t)‖ ≤ βrv(t)

m(0) = mwet , m(t f )≥ 0, r(0) = r0, ṙ(0) = ṙ0, rv(t f ) = 0 ṙ(t f ) = 0.

Problem 7.

max
t f , Tc(·)

m(t f ) = min
t f , Tc(·)

Z t f

0
‖Tc(t)‖dt subject to

r̈(t) = g+Tc(t)/m(t), ṁ(t) =−α‖Tc(t)‖
0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2,

‖rd(t)‖ ≤ βrv(t)
m(0) = mwet , m(t f )≥ 0, r(0) = r0, ṙ(0) = ṙ0, rv(t f ) = 0 rd(t f ) = R ṙ(t f ) = 0.

Problem 8.

min
t f , Tc(·), Γ(·)

Z t f

0
Γ(t)dt subject to

ṁ(t) =−αΓ(t), (13)
‖Tc(t)‖ ≤ Γ(t), (14)

0 < ρ1 ≤ Γ(t)≤ ρ2, (15)

r̈(t) = g+Tc(t)/m(t),
‖rd(t)‖ ≤ βrv(t)

m(0) = mwet , m(t f )≥ 0, r(0) = r0, ṙ(0) = ṙ0, rv(t f ) = 0 rd(t f ) = R ṙ(t f ) = 0.



Lemma 2. Assume that a solution to Problem 6 exists, which we denote {t6
f ,T

6
c (·),r6(·)}. Let {t8

f ,T
8

c (·),r8(·)} be the
solution to Problem 8 with R = r6

d(t f ). Then {t8
f ,T

8
c (·),r8(·)} is an optimal solution to Problem 5.

Proof. First, note that {t6
f ,T

6
c (·),r6(·)} is a feasible solution to Problem 8 with R = r6

d(t f ), since the only additional
constraint in Problem 8 is rd(t f ) = R, and by design we have r6

d(t f ) = R. Hence a feasible solution to Problem 8 exists
for R = r6

d(t f ). Solving this problem we obtain {t8
f ,T

8
c (·),r8(·)}, and from Lemma 1, we know that this is a feasible

solution to Problem 7 for R = r6
d(t f ). Any feasible solution to Problem 7 is a feasible solution to Problem 5 since the

constraints in these problems differ only by the added rd(t f ) = R constraint in Problem 7. Hence {t8
f ,T

8
c (·),r8(·)} is a

feasible solution to Problem 5. This means that:

‖r8
d(t f )‖ ≥ ‖r5

d(t f )‖. (16)

Now note that since Problem 6 is a relaxation of Problem 5, we know that ‖r6
d(t f )‖ ≤ ‖r5

d(t f )‖. Since in Problem 8 we
have assigned R = r6

d(t f ), we know that r8
d(t f ) = r6

d(t f ) and hence:

‖r8
d(t f )‖ ≤ ‖r5

d(t f )‖. (17)

Combining (16) and (17) we have ‖r8
d(t f )‖= ‖r5

d(t f )‖. Hence the targeting error in the optimal solution to Problem 8
is the same as that in the optimal solution to Problem 5. We have already shown that {t8

f ,T
8

c (·),r8(·)} is a feasible
solution to Problem 5. Hence the optimal solution to Problem 8 is an optimal solution to Problem 5.

In order to solve Problems 6 and 8 in practice, we perform the same change of variables and discretization as
described in Sections II and III. For a given t f , this leads to two SOCP problems that, as before, can be solved to global
optimality using existing solvers, with guarantees on convergence and accuracy. As with the original PDG problem
(Problem 1) we must perform a line search to find the optimal time-of-flight t∗f ; we use the same line search described
in Section III, except that at each iteration of the outer loop, instead of solving Problem 1, we solve Problem 6. Then,
in order to ensure that the nonconvex constraints are satisfied, we solve Problem 8 once, using the targeting error from
the optimal solution found to problem Problem 6.

Simulation results obtained using the new fuel-limited targeting approach are shown in Figures 9 and 10. In this
example, the spacecraft is at an initial altitude of 2km and initial lateral position of (10km,5km). The initial vertical
velocity is −20m/s downwards, and the initial lateral velocity is (100m/s,100m/s) In this situation, the minimum
fuel mass required to reach the target is 672kg. However we restrict the fuel mass to 600kg, and hence the fuel-limited
targeting algorithm finds the closest feasible landing location; in this case the closest landing location is 2.4km from
the target.
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Figure 9. Fuel-limited horizontal transfer. The initial position is at (10000,5000) and the target is at (0,0). Despite not having enough fuel
to reach the target, the fuel-limited algorithm performs a safe landing as close as possible to the target.
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Figure 10. Fuel-limited trajectory. Zero vertical position (X) and velocity is achieved, but the final lateral position (Y,Z) is some distance
from the target.

VI. Towards an Onboard Solution

The SOCP formulation presented in earlier sections enables the fuel optimal trajectory generation problem to
be solved robustly and very efficiently using numerical SOCP solvers, which have guarantees of convergence to
the globally optimal solution. One such algorithm, based on a primal dual interior-point method [?,?], has been
implemented in the Matlab and C programming languages for a general class of SOCPs and tested extensively [?, ?] .
A typical fuel optimal solution is computed in 2-3 seconds by using the Matlab version on a 2.16 GHz Intel processor.
Note that the numerical solver is a generic one and it is not customized for the powered descent guidance (PDG)
problem. These execution times and its robust convergence global fuel optimal solutions make algorithm an excellent
ground analysis software element, and illustrate its potential for onboard guidance optimization.

However, due to mission operational constraints and risk, it is desirable to have a non-iterative solution approach
for onboard use. This motivated us to investigate alternative methods for onboard solution of the PDG problem. The
main idea behind this approach is to generate a table of solutions of the PDG problem for carefully chosen initial
states (initial positions and velocities) to generate all other possible solutions onboard. This approach is currently
under development and the mathematical details involved in constructing the methodology is beyond the scope of this
paper. In this paper, we just present the main idea and the research direction. The main property of this table lookup
approach is the following: Given a requirement on the maximum sub-optimality that can be tolerated, for example ”all
onboard generated solutions must not spend more than 1% fuel than the actual optimal fuel”, a table of pre-computed
solutions is constructed. This table is then used to obtain feasible solutions for any possible initial state (not just the
tabulated initial states), while guaranteeing no more than 1% suboptimality. The onboard method has the following
steps:

• Tabulated way-points (TWPs) are generated on the ground for a set of trajectories with different initial positions
and velocities.

• The ISC (initial state cell) that a given initial state belongs to is found via a table lookup.
• TWPs are used by the flight computer to generate interpolated way-points (IWPs) via a smart interpolation,

which has a closed form formula.
• IWPs are used to generate the smooth trajectories in-between waypoints. Piecewise 5th order polynomials of

time are used, based on closed form formulas.

See Figure 11 for an illustration of the table lookup method. Figure 12 presents some initial results generated using
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the table lookup method summarized above. An initial state cell (ISC) with the following dimensions is chosen

Altitude = 3→ 6 km

Downrange = 1→ 4 km

Descent velocity = 40→ 100 m/s

Downrange velocity = 30→ 60m/s

Crossrange velocity = 0→ 30m/s

and the time-of-flight is fixed at 65 seconds for simplicity. Note that this is a relatively large initial state region. The
theoretical analysis suggested a worst-case sub-optimality of 3%. For comparison, an empirical analysis of the sub-
optimality encountered in practice was carried out. The empirical results are obtained by uniformly sampling initial
states from the ISC. These show that, in practice, this approach achieves less than 1% worst-case sub-optimality. Since
the initial theoretical analysis of the method and the simulation results are extremely promising, this table lookup
method will be pursued for the onboard implementation.
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Figure 12. Fuel Penalty in a ISC. The fuel sub-optimality introduced using the table lookup approach is less than 1%. Note that sometimes
the interpolated solution uses less full than that from the numerical optimization. This is because the numerical optimization stops once
certain convergence criteria are met, and so may return a slightly suboptimal solution.



VII. Conclusions

In this paper, we present enhancements for a powered descent guidance algorithm for Mars pinpoint landing. This
algorithm is based on the convexification of a nonconvex optimization problem and computes the global optimal fuel
trajectories in polynomial time, that is, with guaranteed convergence to the optimal solution with a deterministic upper
bound on the number of iterations needed to converge to any prescribed neighborhood of it. Hence the algorithm
hold a strong promise for onboard implementation, which is a currently ongoing research effort. We enhance this
algorithm by incorporating: (i) An efficient way to compute the optimal time-of-flight; (ii) A method to guarantee
no inter-sample subsurface flight occurs due to the discretization; (iii) A formulation to consider Mars’ rotation rate;
(iv) A very efficient method to check the feasibility of the problem before attempting to find any optimal solution
numerically; and (v) a new algorithm for computing the optimal trajectory when there is insufficient fuel to reach the
target. Future work will focus on the implementation of a customized table lookup solution onboard to solve powered
descent guidance fuel optimization problem.
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