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This paper presents several new open-loop guidance methods for spacecraft swarms com-
prised of hundreds to thousands of agents with each spacecraft having modest capabilities.
These methods have three main goals: preventing relative drift of the swarm, prevent-
ing collisions within the swarm, and minimizing the fuel used throughout the mission.
The development of these methods progresses by eliminating drift using the Hill-Clohessy-
Wiltshire equations, removing drift due to nonlinearity, and minimizing the J2 drift. In
order to verify these guidance methods, a new dynamic model for the relative motion of
spacecraft is developed. These dynamics are exact and include the two main disturbances
for spacecraft in Low Earth Orbit (LEO), J2 and atmospheric drag. Using this dynamic
model, numerical simulations are provided at each step to show the e�ectiveness of each
method and to see where improvements can be made. The main result is a set of initial
conditions for each spacecraft in the swarm which provides hundreds of collision-free or-
bits in the presence of J2. Finally, a multi-burn strategy is developed in order to provide
hundreds of collision free orbits under the inuence of atmospheric drag. This last method
works by enforcing the initial conditions multiple times throughout the mission thereby
providing collision free motion for the duration of the mission.

Nomenclature

A cross sectional area of chief spacecraft
Cd drag coe�cient
CF collision fraction
D drift of spacecraft
�D average drift of swarm
~F drag force on chief spacecraft
J2 second harmonic coe�cient of Earth
N(�; �) Normal distribution with mean � and standard deviation �
Qn generalized force corresponding to qn
Re radius of the Earth
~V velocity of chief spacecraft
~Va velocity of chief spacecraft relative to atmosphere
X collision distance

(X̂; Ŷ ; Ẑ) ECI coordinate system

�Graduate Research Assistant, Department of Aerospace Engineering, morgan29@illinois.edu, AIAA Student Member
yAssistant Professor, Department of Aerospace Engineering, sjchung@illinois.edu, AIAA Senior Member
zSta� Engineer, Guidance and Control Analysis Group, james.c.blackmore@jpl.nasa.gov, AIAA Member
xSenior Member of the Technical Sta�, Guidance and Control Analysis Group, behcet.acikmese@jpl.nasa.gov, AIAA Senior

Member
{Senior Research Scientist, Guidance and Control Analysis Group, david.bayard@jpl.nasa.gov, AIAA Associate Fellow
kJPL Fellow and Senior Research Scientist, Guidance and Control Analysis Group, fred.y.hadaegh@jpl.nasa.gov, AIAA

Fellow

1 of 24

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation, and Control Conference
08 - 11 August 2011, Portland, Oregon

AIAA 2011-6632

Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



~adrag drag acceleration vector
h angular momentum
i orbit inclination
kJ2

3
2J2�R

2
e; 2:633� 1010 [km5/s2]

~l relative position vector
_~l relative velocity vector
m mass of spacecraft
n number of spacecraft
qn generalized coordinate
r geocentric distance
rjZ distance from spacecraft to equator
~r position vector of chief spacecraft
t time
vx radial velocity
(x; y; z) coordinate values in the LVLH coordinate system
(x̂; ŷ; ẑ) unit vectors of the LVLH coordinate system
(x̂0; ŷ0; ẑ0) unit vectors of the intermediate LVLH coordinate system
(x̂00; ŷ00; ẑ00) unit vectors of the J2 aligned LVLH coordinate system

 right ascension of the ascending node
� rotation angle between (x̂; ŷ; ẑ) and (x̂0; ŷ0; ẑ0)
� rotation angle between (x̂0; ŷ0; ẑ0) and (x̂00; ŷ00; ẑ00)
� di�erence in a parameter between two spacecraft
� gravitational constant, 398600:4418 [km3/s2]
� air density for chief spacecraft
� argument of latitude
!x rotation rate of coordinate system about x-axis
!y rotation rate of coordinate system about y-axis
!z rotation rate of coordinate system about z-axis
~! rotation vector of coordinate system
~!e rotation vector of Earth

Subscripts
0 initial condition (t = 0)
CP concentric PRO condition
J2 parameter after accounting for J2 terms
L linearized condition
N nonlinear condition (main result)
PM period matched condition
j parameter of deputy spacecraft (j � n)
r desired condition of deputy spacecraft

I. Introduction

Formation ying spacecraft have been a major area of research over the past decade due to their ability
to perform certain tasks, such as interferometry1 and distributed sensing,2 and their potential to achieve
performance at a cheaper cost than monolithic spacecraft. An expensive monolithic spacecraft can be
replaced by many low cost spacecraft. Another advantage of formation ying (FF) spacecraft is that the
formation as a whole is more redundant than a monolithic spacecraft because the failure of a single spacecraft
in the formation can be overcome by the rest of the formation whereas the failure of a monolithic spacecraft
most likely results in the failure of the mission. One of the main challenges of FF spacecraft is the Guidance,
Navigation, and Control (GN&C) of the formation. As a result, a substantial amount of research has been
done on the GN&C of FF spacecraft3{11 in the last decade.

This paper is concerned with the GN&C of a challenging type of formation ying, spacecraft swarms.
We de�ne a swarm as a collection of 1000 or more spacecraft with masses on the order of 100g.12 These
swarms have potential for use as optical relays, distributed antennas, or for massively distributed sensing
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applications among others. Ongoing research in microfabrication is developing the technologies required to
fabricate, at low cost-per-unit, a 100g class of spacececraft, called femtosats, that can be actively controlled
in all six degrees of freedom.12

The large increase in the number of spacecraft (two orders of magnitude larger than typical FF) and the
small size of each spacecraft create several key challenges in spacecraft swarm control. The main challenge
is the large increase in the probability of collisions caused by having so many spacecraft in such a small
volume. Additionally, fuel e�ciency becomes much more important because the size of the each spacecraft
will limit the amount of fuel that can be carried by each spacecraft. One way to eliminate the need for
complex controllers is to use J2 invariant relative orbits, where the relative distance between spacecraft
will be constant, thereby dramatically reducing the possibility of collisions. Another bene�t of J2 invariant
relative orbits is that they are more fuel e�cient than other orbits because they do not require corrections
to account for J2 drift. Even when J2 drift is eliminated, atmospheric drag will cause the spacecraft to drift
apart. One of the biggest problems when accounting for these perturbations, especially atmospheric drag, is
the lack of an exact relative dynamic model including perturbations.

There are many dynamic models in the literature but each of them has limitations. For spacecraft
separations on the order of hundreds of meters, the Hill-Clohessy-Wiltshire (HCW) equations have been
shown to be good linear approximations of the relative dynamics,13 with the added advantage that the
resulting linear time invariant system has a closed form solution. In addition to assuming small separations
from the reference orbit, the HCW equations also assume a circular reference orbit around a perfectly
spherical, and homogeneous Earth. These assumptions can lead to large errors in the motion predicted by
the HCW equations. There have been many attempts to develop more exact dynamics by removing some of
the assumptions made in the HCW equations. Tschauner and Hempel14 removed the restriction of circular
orbits and developed the linear equations of motion for any orbit around a spherical Earth. Schweigart and
Sedwick15 developed linearized dynamics which include J2 e�ects and Hamel and Lafontaine16 extended
this work to include eccentric orbits. Although these dynamic models are more accurate than the HCW
equations, the linearization of the dynamics induces large errors when spacecraft separations are large. The
relative dynamics have also been derived in the form of a state transition matrix.17 If the initial states of
an orbit are known, the state transition matrix can be used to �nd the states at any given time. The main
drawback of this approach is that the state transition matrix has a complicated form, which makes it di�cult
to use. Exact nonlinear dynamics, which include the J2 perturbation, were developed by Xu and Wang.18

Chang et al.19 derived an exact nonlinear dynamic model which includes both J2 and atmospheric drag.
However, the dynamics for the chief use classical orbital elements, which might make the implementation of
the dynamic model more complicated. Therefore, this paper takes the method used by Xu and Wang18 and
extends it to include atmospheric drag in addition to J2 e�ects using hybrid orbital elements. This produces
an exact dynamic model which includes the major perturbations experienced by spacecraft in LEO. The
derivation of this dynamic model can be found in Appendices A-B.

Several papers have attempted to �nd J2 invariant relative motion between two spacecraft. The most
popular method for �nding these orbits is to set the di�erential mean orbital elements equal to zero using
Gauss’s variational equations (GVEs) to propagate the change in each spacecraft’s orbital elements.6{9

Breger et al.10 found partial J2 invariant orbits using the state transition matrix17 and optimized the
motion for minimum drift and fuel. Then, Breger and How11 developed new linear time varying relative
equations of motion and applied an online, model predictive controller to these dynamics. The methods
developed by using GVEs and mean orbital elements are limited by the fact that they are designed for
formations of ten or fewer spacecraft; however, the number of spacecraft in a swarm as well as the limited
capability of each spacecraft creates several problems, which these controllers were not designed to handle.
Mainly, the number of possible collisions scales quadratically with the number of spacecraft so in a swarm
of thousands of spacecraft there are hundreds of thousands of possible collisions. This makes path planning
and control a much more di�cult problem.

In this paper, swarm keeping means maintaining relative distances between multiple spacecraft in the
presence of disturbances and ensuring that collisions do not occur. The swarm keeping methods considered
in this paper are motivated by four increasingly more realistic and complex dynamic models: (i) linearized
dynamics given by the HCW equations, (ii) Keplerian dynamics with spherical Earth assumptions, (iii)
exact dynamics with J2,18 and (iv) exact dynamics with J2 and atmospheric drag (derived in Appendix
A-B). Furthermore, regardless of which model is used to motivate the swarm keeping method, each method
is evaluated using dynamic models (ii) and (iii), except in Section V where atmospheric drag is considered
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and dynamic model (iv) is used.
The main contribution of this paper is the investigation of various methods of swarm keeping and using

numerical simulations to show the e�ectiveness of each method. Energy matching conditions are introduced
in Section IV as a method for swarm keeping with respect to J2 inuence.20 Energy matching is shown by
simulation, in the presence of J2, to provide collision free swarm motion for several hundred orbits with only
a single initializing burn by each agent. Related work has found other conditions that prove J2 invariance
under certain restricted orbits.6{10 In comparison, simulations in Section IV suggest that energy matching
provides a powerful method to minimize both swarm drift rate and the collision rate across a wide range
of reference orbits regardless of altitude, eccentricity, and inclination. A main contribution of this paper
is to identify energy matching as a very e�ective approach to swarm keeping. In Section V, a multi-burn
guidance method is developed and implemented which extends the energy matching method so that it is
e�ective in the presence of atmospheric drag in addition to J2. The collision free equations and multi-
burn guidance method are designed speci�cally to address the major concerns of spacecraft swarm GN&C,
including collision avoidance and fuel e�ciency.

The paper is organized as follows. In Section II, we describe the problem statement and the assumptions
made in initializing the swarm. Additionally, we de�ne the metrics that are used to quantify the swarm
motion. In Section III, we investigate the e�ect of J2 on the swarm and use the HCW equations to develop
some simple single burn control options. In Section IV, we present the main results by expanding upon
the equations developed in Section III taking into account the J2 perturbation. In Section V, we rerun the
simulations with atmospheric drag and use a multi-burn guidance method based on the equations developed
in Section IV in order to provide collision free motion in an environment perturbed by both J2 and drag.
The simulations run in this paper use an exact dynamic model including J2 and atmospheric drag. The
derivation for this model is located in Appendix A-B.

II. Preliminaries: Swarm Initialization

In order to investigate the relative motion of the swarm, two coordinate systems must be de�ned. First,
the Earth Centered Inertial (ECI) coordinate system is used to locate the chief spacecraft or a virtual
reference point called the chief orbit (see Fig. 1a). This coordinate system is �xed and located at the center
of the Earth. The X̂ direction points towards the vernal equinox, the Ẑ direction points towards the north
pole, and the Ŷ direction is perpendicular to the other two and completes the right-handed coordinate
system. The second coordinate system is the Local Vertical, Local Horizonal (LVLH) coordinate system.
The LVLH frame is centered at the chief spacecraft or chief orbit. Figure 1a shows the LVLH frame with
respect to a chief spacecraft. The x̂, or radial, direction is always aligned with the position vector and points
away from the Earth, the ẑ, or crosstrack, direction is aligned with the angular momentum vector, and the
ŷ, or alongtrack, direction completes the right-handed coordinate system. The LVLH frame is a rotating
frame with a rotation rate of !x about the radial axis and !z about the crosstrack axis. In other words, !x
is the precession rate of the coordinate system and !z is the orbital rotation rate.

The chief orbit is de�ned using hybrid orbital elements which include: geocentric distance (r), radial
velocity (vx), angular momentum (h), inclination (i), right ascension of the ascending node (
), and argument
of latitude (�). These six parameters fully de�ne18 the chief orbit in the ECI frame. These hybrid states
are used instead of the classical orbital elements because the orbits of the spacecraft may vary due to the
perturbations. Hybrid states still have a physical meaning when describing a perturbed orbit. The classical
orbital elements can easily be found from the hybrid states. The exact dynamics for the chief orbit are
derived in Appendix A. Now that the chief orbit has been located, we can de�ne the LVLH frame for the
chief orbit and use it to locate the deputy spacecraft. The relative position and velocity of the deputy

spacecraft are expressed by ~lj = [ xj yj zj ]T and
_~lj = [ _xj _yj _zj ]T , respectively.

For numerical simulations in this paper, the initial distribution of the swarm is a normal distribution
in each direction. Each normal distribution is centered at the chief, or origin of the LVLH frame, and has
a standard deviation �. In other words, the initial position of a spacecraft can be written as (x; y; z) =
(N(0; �); N(0; �); N(0; �)) where all normal distributions are independent. This distribution was chosen
to represent a random deployment of the swarm. The actual deployment of the spacecraft would need to
be more controlled than what is assumed for the simulations in this paper. Therefore, the results in the
following sections give conservative estimates for the number of collisions. Additionally, each deputy has the
same velocity as the chief in the LVLH frame which means that ( _x; _y; _z) = (0; 0; 0). However, in all of the
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Chief

Deputy

(a) ECI (X̂; Ŷ ; Ẑ) and LVLH Frames (x̂; ŷ; ẑ)

Concentric PROs

(b) Spacecraft Swarm

Figure 1. A visualization of the relative coordinate system and a spacecraft swarm

simulations, each spacecraft performs a burn at the start of the simulation so the assumption that all of the
relative velocities are the same will not a�ect the swarm motion. An example of a spacecraft swarm is shown
in Fig. 1b.

Each simulation in this paper is run for a period of 500 orbits with 60 output times per orbit. Unless
otherwise speci�ed, the nominal swarm has a circular chief orbit with an altitude of 500 km, an inclination
of 45 degrees, and an argument of latitude of 45 degrees. The nominal swarm has 500 deputies distributed
around the chief using a standard deviation (�) of 0.5 km.

In order to determine the e�ectiveness of a swarm, we de�ne metrics to quantify the motion of the swarm.
Two metrics are the drift of each spacecraft (Dj) and the average drift of the swarm ( �D). The drift of a
spacecraft is the maximum alongtrack position in the LVLH frame over all orbits compared to the maximum
alongtrack position attained during its �rst orbit, and is illustrated in Fig. 2. The average drift of the swarm
is shown in the following equation.

Initial Burn

Drift

Maximum 

y-position

Figure 2. Drift of a Spacecraft

�D ,
1

n

nX
j=1

Dj (1)

The collision fraction of the swarm is de�ned as the number of spacecraft which have come within a
distance X of another spacecraft at, or before, a given time. The de�nition of collision fraction (CF ) is
shown below.
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Rj(t
0) ,

(
0 if k~lj(t)�~li(t)k > X for all t � t0 and all i 6= j

1 if k~lj(t)�~li(t)k � X for any t � t0 and any i 6= j
(2)

CF (t) ,
1

n

nX
j=1

Rj(t) (3)

where n is the number of spacecraft, t is the time vector, and t0 is a speci�c time point in t. Then, we de�ne
physical collisions by setting X = 1 m. It is important to note that once a spacecraft collides, it continues on
the same trajectory and can collide with other spacecraft. However, the collision fraction measures how many
of the spacecraft have collided. Therefore, this metric is always between 0 and 1 and is always increasing. A
collision fraction of 0 means the swarm is collision free at that time and a collision fraction of 1 means that
all spacecraft have collided at least once before that time.

III. Single Burn Swarm Keeping Options

This section investigates the relative dynamics of spacecraft swarms in a J2 perturbed orbit by allowing
each spacecraft to execute a single burn at time t = 0. Since the spacecraft are initialized with no relative
velocity, the �V required for each burn is equal to the velocity at t = 0+. Another way to look at this
problem is that we are setting the initial conditions for each spacecraft and then numerically integrating
the exact dynamics with J2 only. For each simulation, we are looking at three parameters: average drift
( �D), fuel required for the initial burn (�V ), and collision fraction (CF ). Average drift shows whether or
not the swarm is maintaining its original shape and how fast the swarm is dispersing, fuel required tells us
how expensive each option is, and collision fraction tells us how many of the spacecraft are collision free at
a given time. In an ideal scenario, all of these parameters will be small. The initial burns discussed in the
following subsections begin with the simplest, most fuel e�cient approach, and become increasingly more
complex while demonstrating better drift and collision results. The purpose of this section is to provide
some simple control methods to use as a benchmark for the main result which is developed in Section IV.

A. Uncontrolled Motion

Although we know that the J2 disturbance will cause the chief orbit to drift relative to the Keplerian orbit,
it is unknown how the spacecraft will move relative to each other. For most applications, the motion of
the swarm as a whole can be perturbed as long as the swarm itself maintains its shape. We know that
spacecraft with di�erent orbital periods will rapidly drift apart. In fact, running simulations for spacecraft
with di�erent periods shows that the drift rate of the swarm is on the order of tens of km/orbit.

B. Period Matching

1. Linearized Period Matching

In order to reduce the drift rate of the swarm, we �rst eliminate the drift caused by di�erences in the orbital
periods of each spacecraft. Since the spacecraft are initialized at a position which is within a few kilometers
of the chief orbit, we can use the HCW equations to �nd the initial conditions required for period matching
with the only additional constraint being a circular chief orbit. The solution to the HCW equations, which
give the relative position and velocity of the spacecraft as functions of time, are shown below:13

2666666664

x(t)

y(t)

z(t)

_x(t)

_y(t)

_z(t)

3777777775
=

2666666664

4� 3 cos!zt 0 0 sin!zt=!z 2(1� cos!zt)=!z 0

6 sin!zt� 6!zt 1 0 2(�1 + cos!zt)=!z 4 sin!zt=!z � 3t 0

0 0 cos!zt 0 0 sin!zt=!z

3!z sin!zt 0 0 cos!zt 2 sin!zt 0

6!z(�1 + cos!zt) 0 0 �2 sin!zt �3 + 4 cos!zt 0

0 0 �!z sin!zt 0 0 cos!z

3777777775

2666666664

x0

y0

z0

_x0

_y0

_z0

3777777775
(4)
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The only terms that are secular are the ones which are multiplied by t in Eq. (4). These terms are
responsible for the majority of the drift described in Section III.A. Therefore, if we set the sum of these
terms to zero, we will reduce the drift from the previous simulation. Setting these terms to zero yields the
conditions:

_x0;L;PM = 0; _y0;L;PM = �2!zx0; _z0;L;PM = 0 (5)

Since the HCW equations are used, we are assuming an unperturbed circular reference orbit and the orbital
rotation rate is de�ned by !z =

p
�=r3.

Equation (5) are the linearized conditions required for period matching the swarm, indicated by the
subscript (L,PM). Period matching results in the second condition in Eq. (5) and the �rst and third conditions
are chosen in order to minimize fuel. Equation (5) assumes that all of the spacecraft have the zero relative
velocity upon deployment. If this is not the case, then the �rst and third conditions can be modi�ed so that
the change in radial and crosstrack velocity is zero. In Section IV, all three conditions will be fully de�ned,
which will eliminate this dependency on the initial velocities. The simulation results for a linearized period
matched swarm are shown in Fig. 3.
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Figure 3. Simulation results of a linearized period matched swarm

In Fig. 3a, the drift using Keplerian dynamics is nearly zero. The small drift is caused by the fact that
Eq. (4) is the linearized solution but the simulation is run using the Keplerian dynamics, which are nonlinear.
Now that the drift has been reduced, the e�ect of the J2 perturbation is evident. The drift rate under exact
dynamics with J2 only is 18.4 m/orbit (over the �rst 500 orbits). This drift rate is about 1000 times less
than the drift rate in the uncontrolled swarm. At this drift rate, the swarm size will no longer limit the
swarm’s functionality.

Unfortunately, there are some disadvantages to the period matched swarm. The �rst disadvantage is
that the average �V required per spacecraft is 0.9 m/s. The second, and much more alarming, problem
with this approach can be seen in Fig. 3b. This �gure shows the collision results for the period matched
swarm. Within the �rst few orbits, the collision fraction is above 0.5. This means that most of the spacecraft
collide immediately and the rest collide shortly after. Therefore, these initial conditions are not su�cient
for a functional swarm.

2. Nonlinear Period Matching (Energy Matching without J2)

The linearized period matching results are only valid for small swarms with circular chief orbits. In order
to eliminate the errors caused by the linearization and eccentric chief orbits, we match the energy of all
spacecraft using Keplerian dynamics. Recall that the inertial velocity for the chief and deputy spacecraft
are ~V and ~Vj , respectively. Their de�nitions are shown below.
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~V = vxx̂+
h

r
ŷ (6)

~Vj = (vx + _xj � yj!z)x̂+ (
h

r
+ _yj + xj!z � zj!x)ŷ + ( _zj + yj!x)ẑ (7)

The energy matching condition is shown below. k~Vrk is the required deputy velocity magnitude for energy
matching given the deputy position (rj) and the chief position (r).

k~V k2

2
� �

r
=
k~Vrk2

2
� �

rj
(8)

This equation can be rewritten as

k~Vrk =

s
k~V k2 + 2�

�
1

rj
� 1

r

�
(9)

where ~V is given in Eq. (6). Next, we take the velocity resulting from the linearized initial conditions and
apply the energy matching condition in the direction of the current velocity in order to minimize the amount
of fuel used. The energy matching condition is shown below.

~VN;PM =
k~Vrk
k~VL;PMk

~VL;PM (10)

In this equation, ~VL;PM is the velocity required to satisfy the linearized period matching conditions.
This velocity is de�ned by substituting linearized initial conditions into Eq. (7) and results in the following
equation.

~VL;PM = (vx + _x0;L;PM � y0!z)x̂+ (
h

r
+ _y0;L;PM + x0!z � z0!x)ŷ + ( _z0;L;PM + y0!x)ẑ (11)

Substituting Eq. (11) into Eq. (10) and solving for the initial conditions in the LVLH frame results in
the following conditions for nonlinear period matching.

_x0;N;PM =
k~Vrk
k~VL;PMk

_x0;L;PM +

 
k~Vrk
k~VL;PMk

� 1

!
(vx � y0!z)

_y0;N;PM =
k~Vrk
k~VL;PMk

_y0;L;PM +

 
k~Vrk
k~VL;PMk

� 1

!�
h

r
+ x0!z � z0!x

�
(12)

_z0;N;PM =
k~Vrk
k~VL;PMk

_z0;L;PM +

 
k~Vrk
k~VL;PMk

� 1

!
y0!x

The nonlinear period matched initial conditions can be found by substituting Eq. (5) into Eq. (12). This
result is shown below.

_x0;N;PM =

 
k~Vrk
k~VL;PMk

� 1

!
(vx � y0!z)

_y0;N;PM =
k~Vrk
k~VL;PMk

(�2!zx0) +

 
k~Vrk
k~VL;PMk

� 1

!�
h

r
+ x0!z � z0!x

�
(13)

_z0;N;PM =

 
k~Vrk
k~VL;PMk

� 1

!
y0!x

Applying these initial conditions to the nominal swarm yields results very similar to those in Fig. 3 with
the only di�erence being the fact that the nonlinear initial conditions eliminate the drift under Keplerian
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dynamics. This is to be expected because we know that period matching is su�cient to eliminate drift
assuming a spherical Earth. Under the inuence of J2, the nonlinear initial conditions in Eq. (13) have the
same limitations as the linearized initial conditions in Eq. (5). Therefore, a new method which eliminates
collisions within the swarm will be developed in Section IV.

In order to determine why these collisions happen, the motion of the swarm can be studied by looking
at the passive relative orbits (PROs) of each spacecraft. The analysis of the PROs shows two important
aspects of swarm motion. First, although the swarm is slowly expanding from the macroscopic perspective,
the swarm agents are moving very quickly relative to each other. In other words, the swarm size is changing
very slowly but its shape is rapidly changing. This would make it di�cult for the swarm to perform an
interferometry mission that requires a speci�c swarm con�guration. The other aspect of swarm motion that
was discovered is that the spacecraft’s PROs are intersecting in the x-y plane of the LVLH frame and these
intersection points are where the collisions are occurring. Figure 4 shows the projection of ten PROs in
the x-y plane. In this �gure, it is clear that many collisions can occur because there are many intersections
between the ten orbits. Obviously, as the number of spacecraft increases to 500 or 1000, the number of
possible collisions will increase rapidly. The reason for these intersections is the fact that each PRO has a
di�erent center point.
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Figure 4. The projection in the x-y plane of the �rst orbit for ten spacecraft in a period matched swarm

C. Concentric PROs

1. Linearized Concentric PROs

As stated in the previous subsection, the reason for collisions is the fact that the PROs of the spacecraft are
intersecting in the x-y plane of the LVLH frame. In order to prevent collisions, the spacecraft must be placed
on concentric PROs. If the PROs are concentric, then any two spacecraft will either be on PROs that do
not intersect because one is completely inside the other or they will be on the same PRO with one following
the other. Either way the spacecraft cannot collide unless they are on the same PRO with the same phase
but this can only happen if they are initialized at the same position, which is very unlikely. In order to �nd
the initial conditions for concentric PROs, we once again look at the solutions to the HCW equations, which
are shown in Eq. (4).

In addition to the initial condition required by Eq. (5), the constant terms in the x(t) and y(t) equations
must be the same for all spacecraft in order for them to be on concentric PROs in the x-y plane. For
simplicity, we set them equal to zero. The results are as follows:

_x0;L;CP =
1

2
!zy0; _y0;L;CP = �2!zx0; _z0;L;CP = 0 (14)

where the �rst two conditions come from the concentric PROs and the third condition is set to zero in order
to minimize fuel. The third condition is based on the assumption that the spacecraft are initialized with no
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relative velocity in the LVLH frame. Setting the constant terms to zero in the x(t) equation results in the
condition for period matching from Eq. (5), which means that any period matched spacecraft has a PRO
centered at zero in the x direction. Therefore, we now have two initial conditions which will give us period
matched orbits with PROs that will not intersect. The results of the concentric PRO swarm are shown in
Fig. 5.
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(b) Collision results

Figure 5. Simulation results of a linearized concentric PRO swarm

Figure 5a shows the drift results for the concentric PRO swarm. These results are nearly identical to the
drift results from a period matched swarm. The drift rate of the swarm under the inuence of J2 is 20.0
m/orbit, which is small compared to the initial size of the swarm. The average fuel cost per spacecraft of
this method is 1.1 m/s which is about a 25% increase compared to the period matched swarm.

On the other hand, the collision results in Fig. 5b show much improvement compared to the previous
simulation. The concentric PRO swarm is nearly collision free (one or two collisions) for the �rst 60 orbits
even with the exact dynamics with J2 only. This collision free motion occurs because the PROs do not
intersect in the x-y plane. Figure 6a shows the �rst orbit for ten spacecraft and it is clear that no collisions
can occur. The collision free motion continues until somewhere between orbit 60 and orbit 200. At this
time, more than half of the spacecraft collide. The reason for this large jump in collisions is that each PRO
is slightly drifting due to the J2 e�ect. The problem arises because the PROs are drifting at di�erent rates
and in di�erent directions so eventually the PROs will intersect in the x-y plane at which time collisions
start to occur. The PRO drift is illustrated in Fig. 6b.

2. Nonlinear Concentric PROs

As with the linearized period matching initial conditions, the linearized concentric PRO conditions assume
circular chief orbits and small swarms. Therefore, some linearization errors occur when these initial conditions
are used with the Keplerian dynamics even though no perturbations are included. In order to eliminate these
errors we use the same energy matching method as we did in Section III.B.2. In fact, a slightly modi�ed
version of Eq. (12), which is used for nonlinear concentric PROs, is shown below.

_x0;N;CP =
k~Vrk
k~VL;CP k

_x0;L;CP +

 
k~Vrk
k~VL;CP k

� 1

!
(vx � y0!z)

_y0;N;CP =
k~Vrk
k~VL;CP k

_y0;L;CP +

 
k~Vrk
k~VL;CP k

� 1

!�
h

r
+ x0!z � z0!x

�
(15)

_z0;N;CP =
k~Vrk
k~VL;CP k

_z0;L;CP +

 
k~Vrk
k~VL;CP k

� 1

!
y0!x
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Figure 6. The projection in the x-y plane of concentric PROs

where
~VL;CP = (vx + _x0;L;CP � y0!z)x̂+ (

h

r
+ _y0;L;CP + x0!z � z0!x)ŷ + ( _z0;L;CP + y0!x)ẑ (16)

and k~Vrk is de�ned in Eq. (9).
Then, using the conditions in Eq. (14), Eq. (15) results in the following equation.

_x0;N;CP =
k~Vrk
k~VL;CP k

�
1

2
!zy0

�
+

 
k~Vrk
k~VL;CP k

� 1

!
(vx � y0!z)

_y0;N;CP =
k~Vrk
k~VL;CP k

(�2!zx0) +

 
k~Vrk
k~VL;CP k

� 1

!�
h

r
+ x0!z � z0!x

�
(17)

_z0;N;CP =

 
k~Vrk
k~VL;CP k

� 1

!
y0!x

Applying the initial conditions in Eq. (17) to the nominal swarm gives the results that are very similar
to those seen in Fig. 5. As with period matching, the nonlinear conditions eliminate errors caused by
linearization but does not dramatically improve the collision or drift behavior of the swarm under exact
dynamics with J2 only.

Although the concentric PROs method provides functional swarm motion for 60 orbits, it is not su�cient
for a full mission. The amount of collisions occurring between orbit 60 and orbit 200 will de�nitely prevent
the swarm from functioning; therefore, this approach will not work for any mission longer than a few days.
In Section IV, initial conditions will be developed which provide collision free orbits for missions which last
for months. Additionally, the PROs will drift at di�erent rates depending on the orbital elements of the chief
orbit. Therefore, this jump in the collision fraction can occur as early as the 10 orbit mark. The concentric
PROs can provide desired trajectories for use in a feedback controller21 but on its own it does not achieve
good swarm keeping performance. Instead, the e�ects of the J2 dynamics need to be taken into account
when deriving initial conditions for collision free swarm keeping.

IV. Main Results: Swarm Keeping Methods for J2 Perturbed Orbits

In the previous section, initial conditions were derived for collision free swarm motion using the Keplerian
dynamics. The e�ectiveness of these conditions in a J2 perturbed environment was tested by numerically
integrating the exact dynamics with J2 only. After making several adjustments to the initial conditions, it
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was determined that the J2 e�ect will cause spacecraft to collide and drift apart after a certain number of
orbits. In this section, the initial conditions derived in Section III are modi�ed to take into account the
e�ects of J2 on the swarm motion. Atmospheric drag will be discussed in Section V but it is neglected in
this section because the accelerations due to J2 are several orders of magnitude larger than those caused by
drag. The J2 perturbation a�ects relative motion in two ways: the crosstrack motion becomes coupled with
the in-plane motion and the gravity gradient direction and magnitude are no longer constant.

A. E�ects of Crosstrack Motion

In the HCW equations or Keplerian dynamics, the crosstrack, or out of plane motion, is uncoupled from
the in plane motion. However, with the addition of the J2 terms the motion becomes coupled in all three
directions. This causes a growth in the crosstrack oscillation,7 which will cause secular drift in the alongtrack
direction if it is not accounted for. In order to eliminate this growth, we write the equation for the �rst order
approximation of the crosstrack motion as follows.

z = r sin ��i� r cos � sin i�
 (18)

In this equation, �i and �
 represent the di�erential inclination and right ascension, respectively. The only
term in Eq. (18) that can have a secular drift is �
 (see the equations of motion of the chief orbit in Appendix
A) since r and i do not have secular terms due to J2. Taking the derivative of �
 results in

� _
 = _
j � _
 (19)

where 
j is the right ascension of the deputy spacecraft. Substituting in for _
 and _
j using GVEs, integrating
over an entire orbit to obtain the secular drift, setting the secular drift to zero, and simplifying yields

z(t) = B cos �(t) = B cos (!zt+ �0) (20)

where B is a constant and �0 is the initial argument of latitude of the chief spacecraft. This equation speci�es
that the crosstrack motion must have a certain phase with respect to the orbital motion in order to avoid
growth in the amplitude of the crosstrack motion.

We also have the following equation for crosstrack motion from Eq (4).

z(t) = z0 cos!zt+
_z0

!z
sin!zt (21)

Equating Eq. (20) and Eq. (21), and applying the two conditions in Eq. (14) result in the following conditions.

_x0;L;J2 =
1

2
!zy0; _y0;L;J2 = �2!zx0; _z0;L;J2 = �!zz0 tan �0 (22)

The results of applying Eq. (22) are shown in Fig. 7. In Fig. 7a, the drift rate of the swarm is 15.5
m/orbit. This is a slight improvement over the period matched and concentric PRO swarms. Additionally,
Fig. 7b shows that the collision fraction remains under 0.1 for the �rst 80 orbits and remains under 0.5 for
the entire 500 orbit simulation. Additionally, the fuel required to perform this method is 1.55 m/s, which is
about a 40% increase compared to a concentric PRO swarm. Once again, the drift and collision results are
improved compared to the previous methods. However, these results must be improved further if the initial
conditions are to provide collision free motion.

It is important to note that the third condition in Eq. (22) depends on tan �0 and therefore can potentially
require an in�nite velocity. For this reason, it is recommended that the burn be applied at the equator, if
possible, in order to minimize the fuel used. Additionally, if the burn must be applied when j tan �0j > 1, we
recommend using j tan �0j = 1 and then applying an additional burn once j tan �j � 1. For, some applications,
such as projected circular orbits (PCO), it is desired that the y � z projection be a circle. In this case the
required velocity in the crosstrack direction is �xed by the desired shape of the swarm. Therefore, we choose
when to burn, or �0, so that we do not violate Eq. (22) and we still achieve a circular projection. In this
example it is likely that the burn will be non equatorial.
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(b) Collision results

Figure 7. Simulation results of a linearized concentric PRO swarm with no crosstrack drift

B. E�ects of Gravity Gradient on Swarm Motion

Another di�erence that arises with the addition of J2 is the change in the gravity gradient vector caused
by the J2 disturbance. For a spherical Earth the gravity gradient vector has a constant direction and the
magnitude depends only on r. The Keplerian gravity gradient vector is shown below.

rU =
�

r2
x̂ (23)

The gradient of the gravitational potential under the inuence of J2 is18

rUJ2 =
�

r2
x̂+

kJ2

r4
(1� 3 sin2 i sin2 �)x̂+

kJ2 sin2 i sin 2�

r4
ŷ +

kJ2 sin 2i sin �

r4
ẑ (24)

Since rUJ2 is not aligned with the radial direction, we de�ne a new coordinate system (x̂00; ŷ00; ẑ00) so
that x̂00 is aligned with rUJ2 and ŷ00 remains in the orbital plane. This new coordinate system is achieved
by rotating the LVLH frame counterclockwise about the z axis by the angle � resulting in the intermediate
coordinate system (x̂0; ŷ0; ẑ0). Then, this coordinate system is rotated clockwise about the ŷ0 axis by an angle
� to arrive at the desired coordinate system (x̂00; ŷ00; ẑ00). The angles � and � are functions of the chief’s
orbital parameters and are de�ned as follows:

� = arctan

�
rUJ2 � ŷ
rUJ2 � x̂

�
(25)

� = arctan

 
rUJ2 � ẑp

(rUJ2 � x̂)2 + (rUJ2 � ŷ)2

!
(26)

Now that we have a coordinate system aligned with the gravitational potential gradient, we can apply
Eq. (22) using the new coordinate system to get264 _x000;L;J2

_y000;L;J2

_z000;L;J2

375 =

264 0 1
2!
00
z 0

�2!00z 0 0

0 0 �!00z tan �0

375
264x000y000
z000

375 (27)

where the orbital angular rate !00z is

!00z =

r
krUJ2k

r
(28)
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Next, we need to transform Eq. (27) back into the LVLH coordinates. To do this we need the transfor-
mation equations for both rotations. The �rst and second rotation are described by Eq. (29) and Eq. (30),
respectively.

264x0y0
z0

375 =

264 cos� sin� 0

� sin� cos� 0

0 0 1

375
264xy
z

375 (29)

264x00y00
z00

375 =

264 cos� 0 sin�

0 1 0

� sin� 0 cos�

375
264x0y0
z0

375 (30)

Substituting Eq. (30) into the right hand side of Eq. (27) yields264 _x000;L;J2

_y000;L;J2

_z000;L;J2

375 =

264 0 1
2!
00
z 0

�2!00z cos� 0 �2!00z sin�

!00z sin� tan �0 0 �!00z cos� tan �0

375
264x00y00
z00

375 (31)

and substituting Eq. (29) into the right hand side of Eq. (31) gives264 _x000;L;J2

_y000;L;J2

_z000;L;J2

375 =

264 � 1
2!
00
z sin� 1

2!
00
z cos� 0

�2!00z cos� cos� �2!00z sin� cos� �2!00z sin�

!00z cos� sin� tan �0 !00z sin� sin� tan �0 �!00z cos� tan �0

375
264x0

y0

z0

375 (32)

Now solve for ( _x0;L; _y0;L; _z0;L) in terms of ( _x000;L; _y000;L; _z000;L) by inverting Eq. (29) and substituting in the
inverse of Eq. (30). 264 _x0;L;J2

_y0;L;J2

_z0;L;J2

375 =

264cos� cos� � sin� � cos� sin�

sin� cos� cos� � sin� sin�

sin� 0 cos�

375
264 _x000;L;J2

_y000;L;J2

_z000;L;J2

375 (33)

Finally, substituting Eq. (32) into the right hand side of Eq. (33) results in the desired initial conditions
shown below.

264 _x0;L;J2

_y0;L;J2

_z0;L;J2

375 = !00z

264
3
2c�s�c� � c

2
�s

2
�t�0

1
2c

2
�c� + 2s2

�c� � c�s�s2
�t�0 2s�s� + c�c�s�t�0

�2c2�c� � 1
2s

2
�c� � c�s�s2

�t�0 � 3
2c�s�c� � s

2
�s

2
�t�0 �2c�s� + s�c�s�t�0

� 1
2s�s� + c�c�s�t�0

1
2c�s� + s�c�s�t�0 �c2�t�0

375
264x0

y0

z0

375
(34)

where s(�),c(�), and t(�) represent sin(�), cos(�), and tan(�), respectively. These initial conditions are applied
to the nominal swarm and the results are shown in Fig. 8.

Figure 8a shows the drift results for a nominal swarm. After 500 orbits, the swarm drifts by 2.6 m/orbit
under the inuence of J2. This is a signi�cant improvement over previous methods. However, the collision
results of the J2 adjusted swarm, shown in Fig. 8b, show that the collision fraction remains under 0.1 for
100 orbits but eventually reaches 0.75, which is not acceptable for a functioning swarm. The fuel usage is
1.55 m/s which is similar to the method in Section IV.A. These results show that the J2 adjusted method is
still not su�cient for collision free motion.

C. Energy Matching with J2

The initial conditions from Eq. (34) greatly decrease the drift rate of the swarm by accounting for the change
in magnitude and direction of the gravity gradient vector caused by the J2 e�ect. The major problem with
these equations is that they use Eq. (22) as a starting point. Therefore, these J2 adjusted conditions assume
a circular chief orbit and they are linearized. In order to eliminate these potential sources of error, a new
set of initial conditions are derived using nonlinear energy matching instead of using the HCW equations to
eliminate drift.
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(b) Collision results

Figure 8. Simulation results of a swarm accounting for linearized J2 e�ects

In order to ensure that the spacecraft do not drift apart, we match the total energy of each deputy
spacecraft to the energy of the chief spacecraft. In the following energy matching condition, k~Vrk is de�ned

in Eq. (9) and ~V is de�ned in Eq. (6).

k~V k2

2
+ U =

k~Vr;J2k2

2
+ Uj (35)

where U and Uj are de�ned below.

U = ��
r
� kJ2

r3

�
1

3
� sin2 i sin2 �

�
(36)

Uj = � �
rj
� kJ2

r3
j

 
1

3
�
r2
jZ

r2
j

!
(37)

Equation (35) can be rewritten as

k~Vr;J2k =

q
k~V k2 + 2(U � Uj) (38)

Now that we have established the desired velocity for an energy matched spacecraft in the presence of J2,
we can use the modi�ed version of Eq. (12) shown below

_x0;N;J2 =
k~Vr;J2k
k~VL;J2k

_x0;L;J2 +

 
k~Vr;J2k
k~VL;J2k

� 1

!
(vx � y0!z)

_y0;N;J2 =
k~Vr;J2k
k~VL;J2k

_y0;L;J2 +

 
k~Vr;J2k
k~VL;J2k

� 1

!�
h

r
+ x0!z � z0!x

�
(39)

_z0;N;J2 =
k~Vr;J2k
k~VL;J2k

_z0;L;J2 +

 
k~Vr;J2k
k~VL;J2k

� 1

!
y0!x

where
~VL;J2 = (vx + _x0;L;J2 � y0!z)x̂+ (

h

r
+ _y0;L;J2 + x0!z � z0!x)ŷ + ( _z0;L;J2 + y0!x)ẑ (40)

Then, applying the conditions in Eq. (34) to Eq. (39) results in the main J2 invariant swarm keeping
equations. The following J2 invariant equations use energy matching to build upon the results from Eq. (22)
and Eq. (34).
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_x0;N;J2 =
k~Vr;J2k
k~VL;J2k

��
3

2
c�s�c� � c2�s2

�t�0

�
x0 +

�
1

2
c2�c� + 2s2

�c� � c�s�s2
�t�0

�
y0 + (2s�s� + c�c�s�t�0) z0

�
!00z

+

 
k~Vr;J2k
k~VL;J2k

� 1

!
(vx � y0!z)

_y0;N;J2 =
k~Vr;J2k
k~VL;J2k

��
�2c2�c� �

1

2
s2
�c� � c�s�s2

�t�0

�
x0 +

�
�3

2
c�s�c� � s2

�s
2
�t�0

�
y0 + (�2c�s� + s�c�s�t�0) z0

�
!00z

(41)

+

 
k~Vr;J2k
k~VL;J2k

� 1

!�
h

r
+ x0!z � z0!x

�

_z0;N;J2 =
k~Vr;J2k
k~VL;J2k

��
�1

2
s�s� + c�c�s�t�0

�
x0 +

�
1

2
c�s� + s�c�s�t�0

�
y0 +

�
�c2�t�0

�
z0

�
!00z

+

 
k~Vr;J2k
k~VL;J2k

� 1

!
y0!x

where � and � are de�ned in Eq. (25) and Eq. (26), respectively. Additionally, s(�),c(�), and t(�) represent
sin(�), cos(�), and tan(�), respectively.
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(b) Collision results

Figure 9. Simulation results of an energy matched swarm

The energy matching conditions in Eq. (41) show a signi�cant improvement in collision and drift results
compared to the linearized conditions. This is because the drift due to J2 has been signi�cantly reduced
so that the errors due to linearization and eccentricity are dominant. Therefore, eliminating these errors
by using the nonlinear conditions has a huge impact on the performance of the swarm and the drift rate
in Fig. 9a is 7.55 mm/orbit, which is about three orders of magnitude better than any other methods.
Additionally, Fig. 9b shows that the collision fraction remains under 2% for 500 orbits. Additionally, the
fuel usage is about 1.55 m/s, which is comparable to the previous methods. Therefore, the energy matched
conditions prevent collisions for more than 500 orbits while still using only a single burn of similar magnitude
to the other methods.

The results of the energy matched swarm for various altitudes, eccentricities, and inclinations are dis-
played in Tables 1-3, respectively. After 500 orbits, at least 39% of the nonlinear concentric PRO swarm has
collided in all of the simulations run. However, in all of the energy matched swarms, less than 2% of the
swarm has collided. It is important to note that 2% is only �ve collisions and these collisions are probably
caused by the fact that the spacecraft are simply located too close together initially. In the following subsec-
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tion, we will derive a condition for the initial separation between any two spacecraft which guarantees that
collisions do not occur because of poor initial spacing in the swarm.

Table 1. Drift rate and collision fraction after 500 orbits for nonlinear concentric PRO and energy matched
swarms with varying altitude, 0 eccentricity, 45 degree inclination, and 45 degree argument of latitude

Concentric PRO (Eq. (17)) J2 Energy Matched (Eq. (41))

Altitude [km] Drift Rate [m/orbit] Collisions [%] Drift Rate [m/orbit] Collisions [%]

300 21.65 55.4 0.00851 1.2

500 20.41 58.0 0.00755 1.6

800 18.73 54.2 0.00636 1.2

1000 17.73 56.6 0.00570 0.8

Table 2. Drift rate and collision fraction after 500 orbits for nonlinear concentric PRO and energy matched
swarms with 500 km altitude, varying eccentricity, 45 degree inclination, and 45 degree argument of latitude

Concentric PRO (Eq. (17)) J2 Energy Matched (Eq. (41))

Eccentricity Drift Rate [m/orbit] Collisions [%] Drift Rate [m/orbit] Collisions [%]

0 20.41 58.0 0.00755 1.6

0.001 20.45 51.4 0.00765 1.2

0.01 20.82 41.8 0.03292 0.8

Table 3. Drift rate and collision fraction after 500 orbits for nonlinear concentric PRO and energy matched
swarms with 500 km altitude, 0 eccentricity, varying inclination, and 45 degree argument of latitude

Concentric PRO (Eq. (17)) J2 Energy Matched (Eq. (41))

Inclination [degrees] Drift Rate [m/orbit] Collisions [%] Drift Rate [m/orbit] Collisions [%]

0 10.70 39.0 0.02010 0.4

30 18.12 45.4 0.00954 0.8

45 20.41 58.0 0.00755 1.6

60 19.00 48.2 0.00478 0.8

90 11.25 47.8 0.00581 0.4

D. Collision Free Conditions

The energy matching conditions in Eq. (41) ensure that the relative orbits of the spacecraft do not drift
enough to cause collisions for over 500 orbits. However, this alone does not guarantee collision free motion
of the swarm. The initial position of each spacecraft must also satisfy a condition to make sure that no
collisions occur within the �rst orbit. In order to check for collisions within the �rst orbit, we make the
assumption that each spacecraft is on a concentric PRO. This assumption is accurate because the J2 drift is
minimal due to both the energy matching conditions and the small time frame (only the �rst orbit) being
considered.

Proposition 1: If two spacecraft are on concentric PROs under the HCW equations, then a su�cient
condition for collision free motion is that their initial positions satisfy20q

�x2
0 + �y2

0 > 2X (42)

where
p
�x2

0 + �y2
0 is the initial projected distance between two spacecraft and X is the minimum distance

at which two spacecraft will collide. This condition ensures that two spacecraft will never come within a
distance X of each other for all time.
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Proposition 1 is proved rigorously in Acikmese et al.20 under the HCW equations. However, it is useful
to invoke here as a heuristic to ensure that there are no poor initial conditions when initializing a swarm with
respect to Keplerian or exact relative dynamics. Combining the condition in Eq. (42) with the J2 energy
matched conditions in Eq. (41) provides collision free motion. Depending on the length of the mission, we
can choose the relative semi-major axis and phase of each spacecraft so that they will not collide for the
duration of the mission. This can be done by calculating the worst case drift and placing the spacecraft on
PROs whose semi-major axes di�er by more than the worst case drift. This will ensure that the PROs never
drift far enough to intersect with another PRO and therefore no collisions will occur.

V. Swarm Keeping for J2 and Atmospheric Drag Perturbed Orbits

This section shows the e�ects of atmospheric drag on energy matched swarms. Although atmospheric
drag e�ects are several orders of magnitude smaller than J2 e�ects, atmospheric drag is a non-conservative
force, which means that energy matching the spacecraft cannot be used to account for atmospheric drag
e�ects. In order to account for atmospheric drag, we develop a multi-burn guidance method, which adjusts
the states of each spacecraft every orbit in order to maintain collision free motion.

A. Atmospheric Drag

The conditions developed in Eq. (41) have been shown to eliminate collisions for spacecraft swarms in the
presence of J2. In this section, we look into the e�ects of atmospheric drag on an energy matched swarm. In
order to do this, the energy matching conditions are applied to the swarm but this time atmospheric drag is
included in the simulation. The collision and drift results from this simulation are shown in Fig. 10.
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Figure 10. Simulation results of an energy matched swarm under the inuence of J2 and atmospheric drag

Figure 10 shows that the addition of atmospheric drag causes the swarm to disperse which then causes
the spacecraft to collide after only 100 orbits. Therefore, the energy matching conditions do not prevent
collisions when atmospheric drag is signi�cant. Since atmospheric drag is dependent on many factors in-
cluding spacecraft mass, cross-sectional area, and altitude, there may be certain missions where the e�ect
of atmospheric drag is so small that the energy matching conditions provide collision free motion. For this
simulation, the values of the cross sectional area (A) and mass (m) of the spacecraft were chosen to be 0.01
[m2] and 0.1 [kg], respectively. These are very conservative values and it is likely that the cross sectional
area of the spacecraft is smaller and that the mass is larger than the values used in these simulations. Both
of these changes will decrease the e�ect of atmospheric drag on the motion of the swarm.

It is important to note that this simulation is run assuming that all of the spacecraft have the same
physical properties. Therefore, the virtual chief spacecraft takes on the same physical characteristics as the
other spacecraft. However, if there is a heterogeneous swarm, spacecraft have di�erent shapes or masses, the
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choice of the chief’s physical parameters is arbitrary. The motion of the deputies relative to each other will
not depend on the physical parameters of the chief. However, the entire swarm will move with respect to the
chief orbit if the chief’s physical parameters are chosen poorly. For this reason, it is suggested that chief’s
parameters be equal to the average of the deputies so that the chief orbit remains within the swarm. In all
of the simulations run in this paper, each spacecraft is modeled as a sphere so that Cd is not dependent on
the orientation of each spacecraft.

B. Multi-Burn Guidance Method

In order to eliminate the e�ects of atmospheric drag on the swarm, a multi-burn guidance method is proposed
in this section. This controller uses the energy matching initial conditions but rather than burning only
once at the beginning of the mission, this method uses multiple burns to correct for the drift caused by
atmospheric drag. Depending on the available fuel and swarm drift allotted by the mission, these corrections
can be made at various frequencies ranging from multiple times per orbit to once every hundred orbits.
However, the energy matching conditions are much more e�cient at the equator than they are near the
poles. Therefore, it is recommended that burns occur only when � = k�� where k is a nonnegative integer.
This results in zero crosstrack velocity, which reduces the amount of fuel required to perform the manuever.
The multi-burn guidance method using one burn per orbit is illustrated in Fig. 11

Initial Burn

Burns at θ=0

Figure 11. Illustration of the multi-burn guidance method in the LVLH frame

Figure 12 clearly shows that applying the energy matching initial conditions from Eq. (41) once per orbit
reduces the drift caused by atmospheric drag and provides collision free motion for over 500 orbits. This
multi-burn guidance method maintains the size of the swarm and prevents collisions within the swarm uin
the presence the the two major perturbations in LEO, J2 e�ects and atmospheric drag. In the simulation
shown in Fig. 12, the �rst burn occur at � = 45 degrees because that is the initial position but all subsequent
burns occur at � = 0 degrees in order to minimize fuel.

The multi-burn guidance method can be applied regardless of the initial argument of latitude. If there
is no desired swarm shape, the �rst burn should occur immediately, regardless of the initial argument of
latitude, and the following burns should occur at the equator in order to minimize fuel. However, it may
be desirable to maintain a speci�c swarm shape, such as a projected circular orbit. In this case it may
not be possible to achieve this shape and burn at the equator. Therefore, based on the desired crosstrack
velocity, the argument of latitude at which the burn must occur can be calculated based on Eq. (22). In this
scenario, the �rst burn should occur immediately and the following burns should occur at the argument of
latitude which produces the desired crosstrack motion. This method minimizes fuel usage and drift while
still permitting a variety of swarm shapes.
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Figure 12. Simulation results of the multiburn guidance method under the inuence of J2 and atmospheric
drag

VI. Conclusion

In this paper, we explored the swarm keeping problem for a swarm of hundreds of spacecraft. We
introduced the notion of swarm keeping as maintaining relative distances between multiple spacecraft in the
presence of disturbances and ensuring that collisions do not occur. The number of spacecraft along with
their modest capabilities provided new challenges which have not been addressed in previous studies. The
large number of spacecraft makes online path planning or reactive collision avoidance extremely di�cult.
Therefore, we developed a set of initial conditions that provide collision free motion for hundreds of orbits in
the presence of J2 perturbations. Furthermore, such initial conditions coincide with a fuel-e�cient strategy
since very little fuel is required to stay on J2 invariant relative orbits.

The main results developed in Section IV establish J2 invariant relative orbits by applying the energy
matching method after correcting for the e�ects of the gravity gradients and J2-perturbed cross-track mo-
tions. The proposed swarm keeping initial conditions were shown by computer simulation to greatly reduce
both the swarm drift rate and the collision rate across a wide range of reference orbits regardless of alti-
tude, eccentricity, and inclination (e.g., a drift rate of 7.55 mm/orbit and a collision fraction of 1.6% for the
reference orbit of 500 km, 0 eccentricity, and 45 deg inclination).

The performance of collision free motions can deteriorate over time in the presence of air drag especially in
lower LEO. Another contribution of the paper lies in deriving a new set of nonlinear dynamics which include
both J2 e�ects and atmospheric drag. This new dynamic model was used to test the energy matching
conditions in the presence of atmospheric drag. Finally, a multi-burn guidance method, which sequentially
employs the main initial conditions of J2 invariant relative orbits, was developed to correct for the e�ects of
atmospheric drag. This controller was shown by computer simulation to provide collision free motion over
hundreds of orbits for spacecraft swarms in the presence of the two dominant disturbances in LEO, J2 and
atmospheric drag.

Appendix A: Exact Dynamics of Reference Orbit with J2 and Drag

Proposition 2: Considering the two main disturbances in LEO, J2 gravity and atmospheric drag, the
di�erential equations describing the motion of the chief orbit are as follows:
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_r = vx (43)

_vx = � �
r2

+
h2

r3
� kJ2

r4
(1� 3 sin2 i sin2 �)� Ck~Vakvx (44)

_h = �kJ2 sin2 i sin 2�

r3
� Ck~Vak(h� !er2 cos i) (45)

_
 = �2kJ2 cos i sin2 �

hr3
� Ck~Vak!er2 sin 2�

2h
(46)

_i = �kJ2 sin 2i sin 2�

2hr3
� Ck~Vak!er2 sin i cos2 �

h
(47)

_� =
h

r2
+

2kJ2 cos2 i sin2 �

hr3
+
Ck~Vak!er2 cos i sin 2�

2h
(48)

Proof: The rotation rate of the LVLH frame22 is composed of the following components:

!x = _i cos � + _
 sin � sin i (49)

!y = �_i sin � + _
 cos � sin i = 0 (50)

!z = _� + _
 cos i =
h

r2
(51)

The motion of the chief spacecraft is determined by the following equation:

�~r = �rUJ2 + ~adrag (52)

where the gradient of the J2 perturbed gravitational potential energy (rUJ2) is de�ned in Eq. (24) The
acceleration due to drag is

~adrag = �1

2
Cd

A

m
�k~Vak~Va (53)

In order to simplify the drag expression, we de�ne a new constant C = 1
2Cd

A
m�. The velocity of the chief

spacecraft with respect to the atmosphere is found from the following equation.

~Va = ~V � ~!e � ~r (54)

where

~V = vxx̂+
h

r
ŷ

~r = rx̂ (55)

~!e = !eẐ = !e(sin � sin ix̂+ cos � sin iŷ + cos iẑ)

Evaluating Eq. (54) yields

~Va = vxx̂+

�
h

r
� !er cos i

�
ŷ + !er cos � sin iẑ (56)

where !e = 7:2921� 10�5 [rad/s]. Taking the second derivative of ~r yields

�~r =

�
_vx �

h2

r3

�
x̂+

_h

r
ŷ +

!xh

r
ẑ (57)

where we de�ne vx = _r establishing Eq. (43). Evaluating the right hand side of Eq. (52) yields
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�rUJ2 + ~adrag =�
�
�

r2
+
kJ2

r4
(1� 3 sin2 i sin2 �) + Ck~Vakvx

�
x̂�

�
kJ2 sin2 i sin 2�

r4
+ Ck~Vak

�
h

r
� !er cos i

��
ŷ

(58)

�
�
kJ2 sin 2i sin �

r4
+ Ck~Vak!er cos � sin i

�
ẑ

Substituting Eq. (57) and Eq. (58) into Eq. (52) establishes Eq. (44) and Eq. (45). Additionally, the following
equation for the radial rotation rate of the coordinate system is developed.

!x = �kJ2 sin 2i sin �

hr3
� Ck~Vak!er2 cos � sin i

h
(59)

Finally, we can solve Eqs. (49)-(51) and Eq. (59) in order to verify Eqs. (46)-(48).

Appendix B: Exact Relative Dynamics with J2 and Drag

Proposition 3: Considering the J2 perturbation and atmospheric drag, the relative equations of motion
for the j-th spacecraft are shown below.

�xj =2 _yj!z � xj(�2
j � !2

z) + yj�z � zj!x!z � (�j � �) sin i sin � � r(�2
j � �2)

� Cjk~Vajk( _xj � yj!z)� (Cjk~Vajk � Ck~Vak)vx
�yj =� 2 _xj!z + 2 _zj!x � xj�z � yj(�2

j � !2
z � !2

x) + zj�x � (�j � �) sin i cos � (60)

� Cjk~Vajk( _yj + xj!z � zj!x)� (Cjk~Vajk � Ck~Vak)
�
h

r
� !er cos i

�
�zj =� 2 _yj!x � xj!x!z � yj�x � zj(�2

j � !2
x)� (�j � �) cos i

� Cjk~Vajk( _zj + yj!x)� (Cjk~Vajk � Ck~Vak)!er cos � sin i

where �; �j ; �; �j ; rj ; and rjZ have been introduced in order to simplify the potential energy terms. There
de�nitions are shown below.18

� =
2kJ2 sin i sin �

r4

�j =
2kJ2rjZ
r5

�2 =
�

r3
+
kJ2

r5
� 5kJ2 sin2 i sin2 �

r5
(61)

�2
j =

�

r3
j

+
kJ2

r5
j

�
5kJ2r

2
jZ

r5
j

rj =
q

(r + xj)2 + y2
j + z2

j

rjZ = (r + xj) sin i sin � + yj sin i cos � + zj cos i

Additionally, Cj is de�ned similarly to C except Cj uses the deputy values as shown below.

Cj =
1

2
Cd;j

Aj
mj

�j (62)

The value of Cj corresponds to the j-th deputy spacecraft and each deputy will have a di�erent value for
Cj . In general, the drag coe�cient (Cd;j), the cross sectional area (Aj), and the mass (mj) can be di�erent
for each spacecraft but we assume that all spacecraft are the same shape and mass in our simulations for
simplicity.
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Proof: We start by �nding the Lagrangian (Lj) and substituting it into Lagrange’s equation, which is
shown below.

d

dt

�
@Lj
@ _qn

�
� @Lj
@qn

= Qn (63)

In this case, the qn’s are xj , yj , and zj . Now we must �nd the Lagrangian (Lj = Tj � Uj), which is the
di�erence between kinetic and potential energy, and the generalized relative force in each direction (Qn).
The kinetic energy (per unit mass) can be found from

Tj =
1

2
~Vj � ~Vj =

1

2
[(vx + _xj � yj!z)2 + (

h

r
+ _yj + xj!z � zj!x)2 + ( _zj + yj!x)2] (64)

where ~Vj is the velocity of the deputy spacecraft and can be found from

~Vj = (vx + _xj � yj!z)x̂+ (
h

r
+ _yj + xj!z � zj!x)ŷ + ( _zj + yj!x)ẑ (65)

The potential energy for the deputy spacecraft18 (Uj) is de�ned in Eq. (37). Now we evaluate the Lagrangian.

Lj =
1

2
[(vx + _xj � yj!z)2 + (

h

r
+ _yj + xj!z � zj!x)2 + ( _zj + yj!x)2] +

�

rj
+
kJ2

r3
j

 
1

3
�
r2
jZ

r2
j

!
(66)

Substituting Eq. (66) into Eq. (63) yields the exact relative dynamics for spacecraft under the inuence
of J2.18 In order to derive a better dynamic model for spacecraft in LEO, we take into account the e�ect
of atmospheric drag on the relative motion. By including both J2 e�ects and drag, the dynamics derived
in this paper include both of the major perturbations experienced by spacecraft in LEO and provide more
accurate simulation results than any previous models.

Since the drag is a non-conservative force it must be found in the Qn terms. The generalized forces will
be the components of di�erential drag vector which is de�ned below.

~Fdi� = ~Fj � ~F = �Cjk~Vajk~Vaj + Ck~Vak~Va (67)

where Cj is de�ned in Eq. (62) and the velocity of the deputy with respect to the atmosphere is de�ned
below.

~Vaj = ~Va +
_~lj + ~! �~lj (68)

where ~lj is the relative position vector and
_~lj is the relative velocity vector. The generalized forces can be

obtained from Eq. (67) as follows.

Qx = �Cjk~Vajk( _xj � yj!z)� (Cjk~Vajk � Ck~Vak)vx (69)

Qy = �Cjk~Vajk( _yj + xj!z � zj!x)� (Cjk~Vajk � Ck~Vak)
�
h

r
� !er cos i

�
(70)

Qz = �Cjk~Vajk( _zj + yj!x)� (Cjk~Vajk � Ck~Vak)!er cos � sin i (71)

Now all of the values required for the Lagrangian equations of motion have been found. Substituting
Eq. (66), Eq. (69), Eq. (70), and Eq. (71) into Eq. (63) results in the Lagrangian equations of motion. After
much simpli�cation, Eq. (60) is established.
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